
GraphPatcher: Mitigating Degree Bias for
Graph Neural Networks via Test-time Augmentation

Mingxuan Ju1,2, Tong Zhao2, Wenhao Yu1, Neil Shah2, Yanfang Ye1
1University of Notre Dame, 2Snap Inc.

{mju2,wyu1,yye7}@nd.edu; {mju,tong,nshah}@snap.com

ABSTRACT

Recent studies have shown that graph neural networks (GNNs) ex-
hibit strong biases towards the node degree: they usually perform
satisfactorily on high-degree nodes with rich neighbor informa-
tion but struggle with low-degree nodes. Existing works tackle
this problem by deriving either designated GNN architectures or
training strategies specifically for low-degree nodes. Though ef-
fective, these approaches unintentionally create an artificial out-
of-distribution scenario, where models mainly or even only ob-
serve low-degree nodes during the training, leading to a down-
graded performance for high-degree nodes that GNNs originally
perform well at. In light of this, we propose a test-time augmenta-
tion framework, namely GraphPatcher, to enhance test-time gen-
eralization of any GNNs on low-degree nodes. Specifically, Graph-
Patcher iteratively generates virtual nodes to patch artificially
created low-degree nodes via corruptions, aiming at progressively
reconstructing target GNN’s predictions over a sequence of increas-
ingly corrupted nodes. Through this scheme, GraphPatcher not
only learns how to enhance low-degree nodes (when the neigh-
borhoods are heavily corrupted) but also preserves the original
superior performance of GNNs on high-degree nodes (when lightly
corrupted). Additionally, GraphPatcher is model-agnostic and
can also mitigate the degree bias for either self-supervised or su-
pervised GNNs. Comprehensive experiments are conducted over
seven benchmark datasets and GraphPatcher consistently en-
hances common GNNs’ overall performance by up to 3.6% and
low-degree performance by up to 6.5%, significantly outperforming
state-of-the-art baselines. The source code is publicly available at
https://github.com/jumxglhf/GraphPatcher.

KEYWORDS

Graph Neural Network, Test-time Augmentation

ACM Reference Format:

Mingxuan Ju1,2, Tong Zhao2, Wenhao Yu1, Neil Shah2, Yanfang Ye1. 2024.
GraphPatcher: Mitigating Degree Bias for Graph Neural Networks via
Test-time Augmentation. In . ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Graph Neural Networks (GNNs) have gained significant popular-
ity as a powerful approach for learning representations of graphs,
achieving state-of-the-art performance on various predictive tasks,
such as node classification [8, 19, 34], link prediction [44, 48],
and graph classification [12, 38, 42]. These tasks further form the
archetypes of many real-world applications, such as recommenda-
tion systems [3, 40], predicative user behavior models [27, 46], and
molecular property prediction [41, 45].

While existing GNNs are highly proficient at capturing infor-
mation from rich neighborhoods (i.e., high-degree nodes), recent
studies [10, 22, 32, 49] have revealed a significant performance
degradation of GNNs when dealing with nodes that have sparse
neighborhoods (i.e., low-degree nodes). This observation can be at-
tributed to the fact that GNNs make predictions based on the distri-
bution of node neighborhoods [24]. According to this line of theory,
GNNs struggle with low-degree nodes due to the limited amount
of available neighborhood information, which may not be able to
precisely depict the learned distributions. Empirically, as shown
in Figure 1, the classification accuracy of GCN [19] proportionally
decays as the node degree decreases, resulting in a performance
gap of ∼20% accuracy. Furthermore, the sub-optimal performance
of GNNs on low-degree nodes can be aggravated by the power-
law degree distribution commonly observed in real-world graphs,
where the number of low-degree nodes significantly exceeds that
of high-degree nodes [32].

To bridge this gap, several frameworks have been proposed to
specifically improve GNNs’ performance on low-degree nodes [10,
22, 32, 43, 49]. These frameworks either introduce designated ar-
chitectures or training strategies specifically for low-degree nodes.
For examples, Tail-GNN [22] enhances latent representations of
low-degree nodes by incorporating high-degree structural infor-
mation; whereas Coldbrew [49] retrieves a set of existing nodes as
virtual neighbors for low-degree nodes. However, these approaches
suffer from two significant drawbacks. Firstly, while benefiting
low-degree nodes, they inadvertently create an artificial out-of-
distribution scenario during training [37], where models primarily
observe low-degree nodes, leading to a downgraded performance
for high-degree nodes that GNNs originally perform well on. Sec-
ondly, deploying these frameworks often requires changing model
architectures, which can be impractical in real-world scenarios
where the original models are well-trained due to the expensive
re-training cost (on large-scale graphs) and the shared usage of it
across different functionalities in production.

In light of these drawbacks, we propose a test-time augmenta-
tion framework for GNNs, namely GraphPatcher. Given a well-
trained GNN, GraphPatchermitigates the degree bias by patching
corrupted ego-graphs with multiple generated virtual neighbors.

https://github.com/jumxglhf/GraphPatcher
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

0
100
200
300
400
500
600

60
65

70
75

80
85

90

1~2 3~4 5~6 7~8 9~10
50

150

250

350

450

70
75

80
85

90
95

100

1~2 3~4 5~6 7~8 9~10

GCN TuneUp Tail-GNN ColdBrew GraphPatcher # of Nodes

Acc (%) # of Nodes

Degree

Node Degree vs. Accuracy across SoTA

Acc (%) # of Nodes

Degree

Graph: Cora Graph: Citeseer

GCN Overall GCN Overall

Figure 1: The classification accuracy of GCN and SoTA frameworks that mitigate degree biases.

Notably, GraphPatcher not only enhances the performance of
low-degree nodes but also maintains (sometimes improves) GNNs
performance on high-degree nodes. This behavior is empirically im-
portant because practitioners can universally apply GraphPatcher
to all nodes without, like previous works, manually discovering a
degree threshold that differentiates the low- and high-degree nodes.
To achieve so, we first generate a sequence of ego-graphs corrupted
with increasing strengths. Then, GraphPatcher recursively gen-
erates multiple virtual nodes to patch the mostly corrupted graph,
such that the frozen GNN gives similar predictions for the patched
graph and the corresponding corrupted ego-graph in the sequence.
Through this scheme, GraphPatcher not only learns how to patch
low-degree nodes (i.e., heavily corrupted) but also maintains GNNs
original superior performance on high-degree nodes (i.e., lightly cor-
rupted). As a test-time augmentation framework, GraphPatcher
is parameterized in parallel with the target GNN. Hence, Graph-
Patcher is model-agnostic and requires no updates on the target
GNN, enabling practitioners to easily utilize it as a plug-and-play
module to existing well-established infrastructures. Overall, our
contributions are summarized as:

• We study a more practical setting of degree biases on graphs,
where both the performances on low- and high-degree nodes are
considered. In this case, a good framework is required to not only
improve the performance over low-degree nodes but also main-
tain the original superior performance over high-degree nodes.
We evaluate existing frameworks in this setting and observe that
many of them trade off performance on high-degree nodes for
that on low-degree nodes.

• To mitigate degree biases, we propose GraphPatcher, a novel
test-time augmentation framework for graphs. Given a well-
trained GNN, GraphPatcher iteratively generates multiple vir-
tual nodes and uses them to patch the original ego-graphs. These
patched ego-graphs not only improve GNNs’ performance on
low-degree nodes but also maintains that over high-degree nodes.
Moreover,GraphPatcher is applied at the testing time for GNNs,
a plug-and-play module that is easily applicable to existing well-
established infrastructures.

• We conduct extensive evaluation of GraphPatcher along with
six state-of-the-art frameworks that mitigate degree biases on
seven benchmark datasets.GraphPatcher consistently enhances

the overall performance by up to 3.6% and low-degree perfor-
mance by up to 6.5% of multiple GNNs, significantly outperform-
ing state-of-the-art baselines.

2 RELATEDWORKS

Graph Neural Networks. Graph Neural Networks (GNNs) have
become one of the most popular paradigms for learning represen-
tations over graphs [4, 8, 15, 19, 20, 34, 38]. GNNs aim at mapping
the input nodes into low-dimensional vectors, which can be further
utilized to conduct either graph-level or node-level tasks. Most
GNNs explore a layer-wise message passing scheme, where a node
iteratively extracts information from its first-order neighbors, and
information from multi-hop neighbors can be captured by stacked
layers. They achieved state-of-the-art performance on various tasks,
such as node classification [11, 19, 31, 39], link prediction [6, 44, 48],
node clustering [2, 33], etc. These tasks further form the archetypes
of many real-world applications, such as recommendation sys-
tems [3, 40], predictive user behavior models [27, 46], question
answering [16], and molecular property prediction [7, 21, 41, 45].

Degree Bias underlying GNNs. Recent studies have shown
that GNNs exhibit strong biases towards the node degree: they usu-
ally perform satisfactorily over high-degree nodes with rich neigh-
bor information but suffer over low-degree nodes [10, 22, 32, 49].
Existing frameworks that mitigate degree biases derive either desig-
nated architectures or training strategies specifically for low-degree
nodes. For instance, Tail-GNN [22] enhances low-degree nodes’
latent representations by injecting high-degree structural informa-
tion learned from high-degree nodes; Coldbrew [49] retrieves a
set of existing nodes as virtual neighbors for low-degree nodes;
TuneUp [10] fine-tunes the well-trained GNNs with pseudo labels
and heavily corrupted graphs. Though effective for low-degree
nodes, they unintentionally create an artificial out-of-distribution
scenario [37], where models only observe low-degree nodes during
the training, leading to downgraded performance for high-degree
nodes that GNNs originally perform well at.

Test-time Augmentation. While data augmentations during
the training phase have become one of the essential ingredients for
training machine learning models [47], the augmentation applied
during the testing time is far less studied, especially for the graph
learning community. It has been moderately researched in the com-
puter vision field, aimed at improving performance or mitigating

GraphPatcher: Mitigating Degree Bias for

Graph Neural Networks via Test-time Augmentation Conference’17, July 2017, Washington, DC, USA

uncertainties [1, 18, 30, 36]. They usually corrupt the same sample
by different augmentation approaches and aggregate the model’s
predictions on all corrupted samples. Whereas in the graph com-
munity, GTrans [13] proposes a test-time enhancement framework,
where the node feature and graph topology are modified at the test
time to mitigate potential out-of-distribution scenarios.

3 METHODOLOGY

3.1 Preliminary

In this work, we specifically focus on the node classification task.
Let𝐺 = (𝑉 , 𝐸) denote a graph, where 𝑉 is the set of |𝑉 | = 𝑁 nodes
and 𝐸 ⊆ 𝑉 ×𝑉 is the set of |𝐸 | edges between nodes. X ∈ R𝑁×𝑑

represents the feature matrix, with 𝑖-th row representing node
𝑣𝑖 ’s 𝑑-dimensional feature vector. Y ⊆ {0, 1}𝑁×𝐶 denotes the label
matrix, where𝐶 is the number of total classes. And Y(𝐿) denotes the
label matrix for training nodes. We denote the ego-graph of node
𝑣𝑖 is defined as G(𝑣𝑖) = (𝑉𝑖 , 𝐸𝑖) with 𝑉𝑖 = N𝑘 (𝑣𝑖), where N𝑘 (𝑣𝑖)
stands for all nodes within the 𝑘-hop neighborhood of 𝑣𝑖 including
itself and 𝐸𝑖 refers to the edges in-between N𝑘 (𝑣𝑖). A well-trained
GNN 𝑓𝑔 (·;𝜽) : 𝐺 → R𝑁×𝐶 parameterized by 𝜽 takes 𝐺 as input
and maps every node in 𝐺 to a 𝐶-dimensional class distribution.
Formally, we define test-time node patching as the following:

Definition 1 (Test-timeNode Patching). Given a GNN 𝑓𝑔 (·;𝜽)
and a graph G, a test-time node patching framework 𝑓 (·; 𝝓) : 𝐺 → 𝐺

takes 𝐺 and outputs the patched graph 𝐺 with generated nodes and

edges, such that the performance of 𝑓𝑔 over nodes in 𝐺 is enhanced

when 𝐺 is utilized:

argmin
𝝓

L
(
𝑓𝑔
(
𝑓 (𝐺 ;𝜙);𝜽 ∗

)
,Y

)
, (1)

where 𝜽 ∗ = argmin
𝜽

L
(
𝑓𝑔 (𝐺 ;𝜽), Y(𝐿)), (2)

where L refers to the loss function evaluating the GNN (e.g., cross-

entropy or accuracy).

In this work, we aim at mitigating the degree bias via test-time
node patching. To achieve so, two challenges need to be addressed:
(1) how to optimize and formulate 𝑓 (·; 𝝓), such that the graphs
patched by 𝑓 (·; 𝝓) enhance the performance of 𝑓𝑔 (·;𝜽 ∗) over low-
degree nodes; and (2) how to derive a unified learning scheme
that allows 𝑓 (·; 𝝓) to not only improve low-degree nodes but also
maintain the GNN’s original superiority over high-degree nodes.

3.2 The Proposed Framework: GraphPatcher

Our proposed GraphPatcher is a test-time augmentation frame-
work for GNNs to mitigate their degree biases. As shown in Figure 2,
GraphPatcher is presented a sequence of ego-graphs corrupted
by increasing strengths. Starting from the most corrupted graphs,
GraphPatcher iteratively generates patching nodes to augment
the anchor nodes. Compared with the corrupted graphs next in
the hierarchy, the patched graphs should allow the target GNN to
deliver similar outputs. Through this scheme, GraphPatcher not
only learns how to patch low-degree nodes while preserving the
superior performance over high-degree nodes.

3.2.1 Patching Ego-graphs via Prediction Reconstruction. In order
to patch low-degree nodes, a straightforward approach is to corrupt

high-degree nodes into low-degree nodes, and allowing the learn-
ing model to patch the corrupted nodes to restore their original
properties [10, 22]. However, patching low-degree nodes not only
affects their own representations but also those of their neighbors
due to the message-passing mechanism of GNNs as well as the non-
i.i.d. property of nodes in a graph. Besides, modeling over the entire
graphs requires the learning model to consider all potential cir-
cumstances, whose overheads grow quadratically w.r.t. the number
of nodes. Consequently, it becomes challenging to simultaneously
determine both features and neighbors of the patching nodes given
the entire graph.

To reduce the complexity of the optimization process, instead
of working over the entire graph, we conduct node patching over
ego-graphs and regard each ego-graph as an i.i.d. sample of the
anchor node [14, 50]. For each node 𝑣𝑖 , we have 𝑓𝑔 (𝐺 ;𝜽) [𝑣𝑖] =

𝑓𝑔 (G(𝑣𝑖);𝜽) [𝑣𝑖] if 𝑘 equals to the number of layers in 𝑓𝑔 (·;𝜽). To
further simplify the optimization process, we directly wire the
generated virtual nodes to the anchor node (i.e., the generated
virtual nodes are the first-order neighbors of the anchor node).
This implementation is simple yet effective, because we no longer
consider the location to place the patching node: any modification
that affects the latent representation of the anchor node can be
achieved by patching nodes (with different features) directly to the
anchor nodes.

We start explainingGraphPatcher by the most basic case where
we only conduct node patching once. Specifically, given the a
trained GNN 𝑓𝑔 (·;𝜽 ∗), an anchor node 𝑣𝑖 , and a corruption func-
tion T (·; 𝑡) with strength 𝑡 (i.e., first-order neighbor dropping with
probability 𝑡 to simulate a low-degree scenario), that is, G′ (𝑣𝑖) =
(𝑉 ′ (𝑣𝑖), 𝐸′ (𝑣𝑖)) = T (G(𝑣𝑖), 𝑡). GraphPatcher 𝑓 (·; 𝝓) takes the
corrupted ego-graph G′ (𝑣𝑖) as input and outputs the augmented
ego-graph Ĝ(𝑣𝑖) with a patching node 𝑣𝑝 and its feature x𝑝 , which
is directly connected to 𝑣𝑖 . That is,

Ĝ(𝑣𝑖) = 𝑓 (G′ (𝑣𝑖); 𝝓),
where 𝑉 = 𝑉 ′ (𝑣𝑖) ∪ {𝑣𝑝 }, 𝐸 = 𝐸′ (𝑣𝑖) ∪ {𝑒 (𝑖,𝑝) },

where 𝑒 (𝑖,𝑝) refers to the edge connecting 𝑣𝑖 and 𝑣𝑝 and 𝑉 ′ (𝑣𝑖)
and 𝐸′ (𝑣𝑖) refer to the nodes and edges in G′ (𝑣𝑖), respectively. To
optimize 𝑓 (· : 𝝓) such that 𝑓𝑔 (·;𝜽 ∗) gives similar predictions to
Ĝ′ (𝑣𝑖) and G(𝑣𝑖), we minimize the Kullback–Leibler divergence
between the frozen GNN’s predictions on these two ego-graphs,
which is defined as:

argmin
𝝓

∑︁
𝑣𝑖 ∈𝑉tr

KL-Div
(
𝑓𝑔
(
G(𝑣𝑖);𝜽 ∗

)
[𝑣𝑖], 𝑓𝑔

(
𝑓 (G′ (𝑣𝑖); 𝝓);𝜽 ∗

)
[𝑣𝑖]

)
,

(3)
where KL-Div(y1, y2) = (y1 + 𝜖) ·

(
log(y2 + 𝜖) − log(y1 + 𝜖)

)1 with
𝜖 > 0 and 𝑉tr refers to the set of anchor nodes for training. Intu-
itively, the reconstruction process above enforces GraphPatcher
to remedy the corrupted neighborhood caused by T (·; 𝑡) via adding
a patching node directly to the anchor node. It is philosophically
similar to the existing works (e.g., TuneUp [10] and Tail-GNN [22]),
where models gain better generalization over low-degree nodes via
the corrupted high-degree nodes. Empirically, we observe that this
1KL divergence used here is equal to the regularized cross-entropy. It is strongly
convex and Lipschitz continuous due to the incorporation of 𝜖 . These two properties
are required for the derivation of Theorem 1.

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

Increasing Corruption Strength

Original Ego-graph
Heavily Corrupted Ego-graph

(Low-degree case)
Lightly Corrupted Ego-graph

(High-degree case)
Intermediate Ego-graph

1

G
raphPatcher

1

2
G

raphPatcher

G
raphPatcher1

2

3

Iterative Node Patching

Anchor Node Real Neighbor Patching Node
Feed-forward Gradient Descent

Patching from the most
corrupted graph

Target GNN 𝑓(•; 𝜽)

≈
KL Divergence Matching

Target GNN 𝑓(•; 𝜽)

≈
KL Divergence Matching

Target GNN 𝑓(•; 𝜽)

≈
KL Divergence Matching

Figure 2: GraphPatcher is presented ego-graphs corrupted by increasing strengths (i.e., the top half of the figure). From the

most corrupted graph, it iteratively generates patching nodes to the anchor node, such that the target GNN behaves similarly

given the currently patched graph or the corrupted graph next in the hierarchy (i.e., the bottom half of the figure).

branch of approaches can effectively enhance performance over
low-degree nodes. Though promising, according to our empirical
studies, it falls short on the high-degree node that original GNNs
perform well at. This phenomenon may be attributed to the unin-
tentially created out-of-distribution scenario [37], wherein models
primarily encounter nodes with low degrees during the training.
Consequently, the performance of GNNs, which is typically profi-
cient with high-degree nodes, is adversely affected.

3.2.2 Iterative Patching to Mitigate Degree Bias. In this work, we
emphasize that: mitigating degree bias should not focus specifically

on the low-degree nodes: trading off performance on high-degree

nodes for that on low-degree nodes simply creates a new bias towards

high-degree nodes. Therefore, besides enhancing the performance
on low-degree nodes, maintaining GNN’s original superiority on
high-degree nodes is equally critical. This behavior is empirically de-
sirable because practitioners can universally apply GraphPatcher
to all nodes without, like previous works do, manually discovering
the degree threshold that differentiates the low- and high-degree
nodes. Furthermore, the fact that these frameworks are applicable
only to low-degree nodes indicates a lack of robustness: further
remedying a neighborhood that is informative enough to deliver a
good classification result should not jeopardize the performance.

To mitigate the degree bias, we propose a novel training scheme
for GraphPatcher such that it observes both low- and high-degree

nodes simultaneously during the optimization. Specifically, given
a node 𝑣𝑖 , we firstly create a sequence of𝑀 corrupted ego-graphs
of 𝑣𝑖 , denoted as S(𝑣𝑖) = [G′ (𝑣𝑖)𝑚 = T (G(𝑣𝑖), 𝑡𝑚)]𝑀

𝑚=1, with
decreasing corruption strength (i.e., ∀𝑚,𝑛 ∈ {1, . . . , 𝑀}, 𝑡𝑚 > 𝑡𝑛 if
𝑚 < 𝑛). Instead of the one-step patching to match the prediction on
the original ego-graph as described in Section 3.2.1, GraphPatcher
traverses S(𝑣𝑖) and recursively patches the corrupted ego-graph
to match the target GNN’s prediction on the ego-graph next in the
sequence. As also illustrated in Figure 2, this optimization process
is formulated as:

argmin
𝝓

∑︁
𝑣𝑖 ∈𝑉tr

𝑀−1∑︁
𝑚=1

KL-Div
(
𝑓𝑔
(
G′ (𝑣𝑖)𝑚+1;𝜽 ∗

)
[𝑣𝑖], 𝑓𝑔 (Ĝ(𝑣𝑖)𝑚 ;𝜽 ∗) [𝑣𝑖]

)
,

(4)

s.t. Ĝ(𝑣𝑖)𝑚 = 𝑓 (Ĝ(𝑣𝑖)𝑚−1; 𝝓),

where Ĝ(𝑣𝑖)𝑚 = (𝑉𝑚, 𝐸𝑚) with 𝑉𝑚 = 𝑉 ′
1 (𝑣𝑖) ∪ {𝑣𝑝 }𝑚𝑝=1, 𝐸𝑚 =

𝐸′1 (𝑣𝑖) ∪ {𝑒 (𝑖,𝑝) }𝑚𝑝=1, and Ĝ(𝑣𝑖)0 = G′ (𝑣𝑖)1.
The one-step patching described in Section 3.2.1 remedies low-

degree anchor nodes directly to the distributions of high-degree
nodes. During this process, the model does not observe distributions
of high-degree nodes and hence delivers sub-optimal performance.
Therefore, we design GraphPatcher to be an iterative multi-step
framework. At each step, it takes the previously patched ego-graph

GraphPatcher: Mitigating Degree Bias for

Graph Neural Networks via Test-time Augmentation Conference’17, July 2017, Washington, DC, USA

as input and further remedies the partially patched ego-graph to
match the GNN’s prediction on the ego-graph next in the sequence.
This scheme enables GraphPatcher to learn to patch low-degree
nodes in early steps when the ego-graphs are heavily corrupted
(e.g., low-degree case in Figure 2) and maintain the original perfor-
mance in later steps when ego-graphs are lightly corrupted (e.g.,
high-degree case in Figure 2). Specifically, at the 𝑚-th patching
step, the currently patched ego-graph Ĝ(𝑣𝑖)𝑚 reflects the neigh-
bor distribution of ego-graphs corrupted by a specific strength of
𝑡𝑚+1. GraphPatcher takes Ĝ(𝑣𝑖)𝑚 as input and further generates
another patching node 𝑣𝑚+1 to approach the neighbor distribution
of ego-graphs corrupted by a slightly weaker strength of 𝑡𝑚+2. This
process iterates until GraphPatcher traverses S(𝑣𝑖). Intuitively,
the incorporation of 𝑣𝑚+1 enriches the neighbor distribution by
an amount of 𝑡𝑚+2 − 𝑡𝑚+1 corruption strength. This optimization
scheme allows GraphPatcher to observe neighbor distributions
with varying corruption strengths and makes our proposal applica-
ble to both low- and high-degree nodes.

However, the target distribution at each step (i.e., 𝑓𝑔
(
G′ (𝑣𝑖)𝑚+1;𝜽

)
[𝑣𝑖] in Equation (4)) is not deterministic due to the stochastic na-
ture of the corruption function T . Given an ego-graph G(𝑣𝑖) and a
corruption strength 𝑡 , one can at most generate

(|𝑉𝑖 |
(1−𝑡) |𝑉𝑖 |

)
differ-

ent corrupted ego-graphs. With a large corruption strength (e.g.,
ego-graphs early in the sequence S(𝑣𝑖)), two corrupted ego-graphs
generated by the same exact priors might exhibit completely differ-
ent topologies. Such differences could bring high variance to the
supervision signal and instability to the optimization process. To
alleviate the issue above, at each step we sample 𝐿 ego-graphs with
the same corruption strength and let GraphPatcher approximate
multiple predictions over them, formulated as:

Lpatch =
∑︁
𝑣𝑖 ∈𝑉tr

𝑀−1∑︁
𝑚=1

𝐿∑︁
𝑙=1

(5)

KL-Div
(
𝑓𝑔
(
G′ (𝑣𝑖)𝑙𝑚+1;𝜽

∗) [𝑣𝑖], 𝑓𝑔 (Ĝ(𝑣𝑖)𝑚 ;𝜽 ∗
)
[𝑣𝑖]

)
, (6)

where Ĝ(𝑣𝑖)𝑚 = 𝑓 (Ĝ(𝑣𝑖)𝑚−1; 𝝓) and G′ (𝑣𝑖)𝑙𝑚+1 refers to one of
the 𝐿 target corrupted ego-graphs that GraphPatcher aims to ap-
proximate at the𝑚-th step. This approach allows GraphPatcher to
patch the anchor node towards a well-approximated region where
its high-degree counterparts should locate, instead of one point
randomly sampled from this region.

With𝑀−1 virtual nodes patched to the ego-graph, we further ask
GraphPatcher to generate a last patching node to Ĝ(𝑣𝑖)𝑀−1 and
enforce the resulted graph Ĝ′ (𝑣𝑖)𝑀 to match the GNN’s prediction
on the original ego-graph. The last patching node could be regarded
as a slack variable to complement minor differences between the
original and the least corrupted ego-graphs, formulated as:

Lrecon =
∑︁
𝑣𝑖 ∈𝑉tr

KL-Div
(
𝑓𝑔
(
G(𝑣𝑖);𝜽 ∗

)
[𝑣𝑖], 𝑓𝑔

(
Ĝ(𝑣𝑖)𝑀 ;𝜽 ∗

)
[𝑣𝑖]

)
,

(7)
where Ĝ(𝑣𝑖)𝑀 = 𝑓 (Ĝ(𝑣𝑖)𝑀−1; 𝝓). Lrecon (Equation (7)) also pre-
vents GraphPatcher from overfitting to the low-degree nodes and
enforcesGraphPatcher to maintain the target GNN’s performance
over high-degree nodes, since only marginal distribution modifi-
cation should be expected with this last patching node. Hence,

GraphPatcher is optimized by a linear combination of the above
two objectives (i.e., argmin𝝓 Lpatch + Lrecon).

3.2.3 Theoretical Analysis. As shown in Equation (6), one of the
important factors that contribute to the success of GraphPatcher
is sampling multiple ego-graphs with the same corruption strength.
The following theorem shows that the error is bounded w.r.t. the
number of sampled ego-graphs 𝐿.

Theorem 1. Assuming the parameters of GraphPatcher are ini-

tialized from the set 𝑃𝛽 = {𝝓 : | |𝝓 − N(0 |𝝓 | ; 1 |𝝓 |) | |𝐹 < 𝛽} where
𝛽 > 0, with probability at least 1 − 𝛿 for all 𝝓 ∈ 𝑃𝛽 , the error (i.e.,

E(L
patch

) − L
patch

) is bounded by O(𝛽
√︃

|𝝓 |
𝐿

+
√︃

log(1/𝛽)
𝐿

).

The proof of Theorem 1 is provided in Appendix C. From the
above theorem, we note that without the sampling strategy (i.e.,
𝐿 = 1), the generalization error depends only on the number of
parameters (i.e., |𝝓 |) given the same objective function, which could
lead to high variance to the supervision signal and instability to the
optimization process. According to this theorem and our empirical
observation, an affordable value of 𝐿 (e.g., 𝐿 = 10) delivers stable
results across datasets.

4 EXPERIMENTS

4.1 Experimental Setting

Datasets. We conduct comprehensive experiments on seven real-
world benchmark datasets that are broadly utilized by the graph
community, including Cora, Citeseer, Pubmed, Wiki.CS, Amazon
-Photo, Coauthor-CS, ogbn-arxiv, Actor, and Chameleon [11, 25,
29, 39]. This list of datasets covers graphs with distinctive char-
acteristics (i.e., graphs with different domains and dimensions) to
fully evaluate the effectiveness of GraphPatcher. The detail of
these datasets can be found in Appendix A.

Baselines. We compare GraphPatcherwith six state-of-the-art
graph learning frameworks from three branches. The first branch
specifically aims at enhancing the performance on low-degree
nodes, including Tail-GNN [22], ColbBrew [49], and TuneUp [10].
The second branch consists of frameworks that focus on handling
out-of-distribution scenarios, including EERM [37] andGTrans [13].
We list this branch of frameworks as baselines because the sub-
optimal performance of GNNs over low-degree nodes could be
regarded as an out-of-distribution scenario. As GraphPatcher is
a test-time augmentation framework, the last branch of baseline
includes DropEdge, which is a data augmentation framework em-
ployed during training.

Evaluation Protocol. We evaluate all models using the node
classification task [19, 34], quantified by the accuracy score. For
datasets with publicly avaiable (i.e., ogbn-arxiv, Cora, Citeseer,
and Pubmed), we employ their the provided splits for the model
training and testing. Whereas for other datasets, we create a ran-
dom 10%/10%/80% split for the training/validation/testing split, to
simulate a semi-supervised learning setting. All reported perfor-
mance is averaged over 10 independent runs with different ran-
dom seeds. Both mean values and standard deviations for the per-
formances of all models are reported. Besides mitigating the de-
gree bias for supervised GNNs, GraphPatcher is also applicable
to self-supervised GNNs. To evaluate the model performance for

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

Table 1: Performance (%) of all models. Lower and upper percentile indicate the set of nodes whose degree is ranked in the

lower and upper 33% population respectively. A two-layer GCN is used as the backbone model for all applicable baselines. Bold

indicates the best performance and underline indicates the runner-up, with standard deviations as subscripts.

Method Cora Citeseer Pubmed Wiki.CS Am.Photo Co.CS Arxiv Chameleon Actor

Accuracy on Low-degree Nodes (Lower Percentile)
GCN 73.27±0.01 64.86±0.92 76.88±0.40 72.98±0.50 75.59±0.43 84.59±0.45 63.15±0.13 54.05±0.18 27.30±0.52
ColbBrew 73.82±0.98 65.60±0.08 77.72±0.63 73.98±0.52 76.18±0.80 85.56±0.69 63.02±0.21 53.41±0.22 27.88±0.13
Tail-GNN 71.17±0.80 57.66±0.83 75.38±0.89 74.36±0.18 77.22±0.94 85.13±0.60 OOM 53.48±0.04 27.80±0.62
TuneUp 74.47±0.34 65.17±0.22 77.18±0.39 72.60±0.75 76.08±0.62 84.68±0.50 63.34±0.32 53.87±0.43 27.94±0.14
EERM 73.40±0.06 64.27±0.33 76.30±0.20 73.12±0.68 75.15±0.59 84.82±0.74 63.20±0.11 54.11±0.32 27.48±0.39
GTrans 73.16±0.66 64.95±0.83 77.05±1.00 72.15±0.50 75.55±0.55 84.74±0.06 62.88±0.14 54.29±0.14 27.53±0.21
DropEdge 73.57±0.97 65.47±0.27 75.68±0.82 73.94±0.20 76.49±0.03 84.31±0.33 61.33±0.33 54.12±0.41 27.39±0.24
GraphPatcher 78.08±0.06 67.27±0.20 78.98±0.21 74.04±0.86 77.84±0.36 86.76±0.84 64.01±0.12 54.48±0.71 29.27±0.57

Accuracy on High-degree Nodes (Upper Percentile)
GCN 86.83±0.17 77.25±1.00 80.84±0.76 83.40±0.70 84.07±0.71 90.20±0.37 80.46±0.18 54.11±0.73 27.41±0.29
ColbBrew 84.80±0.04 75.33±0.84 78.66±0.38 71.98±0.95 77.07±0.14 82.16±0.39 70.57±0.36 53.72±0.48 26.67±0.29
Tail-GNN 84.13±0.48 74.85±0.30 78.74±0.34 78.91±0.97 80.32±0.60 86.75±0.90 OOM 54.53±0.12 27.13±0.44
TuneUp 87.13±0.67 76.95±0.63 81.74±0.49 83.11±0.53 81.57±0.07 90.65±0.86 80.09±0.51 54.25±0.59 26.64±0.71
EERM 85.89±0.09 76.32±0.23 79.98±0.06 82.98±0.07 84.32±0.96 90.17±0.11 80.37±0.12 54.41±0.71 27.39±0.14
GTrans 86.32±0.34 76.60±0.44 80.56±0.92 83.42±0.04 83.95±0.99 89.99±0.10 80.77±0.26 54.21±0.19 27.29±0.12
DropEdge 86.53±0.99 76.35±0.17 81.44±0.51 83.37±0.43 84.97±0.56 89.28±0.08 80.64±0.36 54.17±0.11 27.38±0.21
GraphPatcher 88.02±0.11 76.65±0.18 83.83±0.79 83.49±0.22 84.17±0.97 90.59±0.46 80.61±0.25 54.20±0.21 27.43±0.62

Overall Performance
GCN 81.22±0.40 70.51±0.46 79.14±0.31 77.30±0.41 80.38±0.86 88.16±0.66 71.73±0.14 52.83±0.35 27.20±0.57
ColbBrew 80.70±0.86 70.10±0.55 78.66±0.93 73.82±0.69 78.24±0.62 85.80±0.79 63.55±0.48 52.12±0.53 26.75±0.32
Tail-GNN 79.44±0.64 65.80±0.04 76.14±0.25 74.66±0.18 80.68±0.58 87.02±0.33 OOM 52.46±0.12 27.62±0.47
TuneUp 82.11±0.39 70.92±0.02 79.91±0.26 76.93±0.81 79.74±0.28 88.46±0.97 71.51±0.30 52.89±0.41 27.32±0.64
EERM 81.47±0.19 70.08±0.19 78.65±0.43 77.29±0.96 79.79±0.61 88.07±0.30 71.70±0.18 52.93±0.24 27.65±0.29
GTrans 80.79±0.51 69.51±0.93 78.67±0.93 76.39±0.27 80.02±0.80 88.06±0.96 71.77±0.19 52.67±0.35 26.93±0.41
DropEdge 81.10±0.31 71.10±0.86 78.90±0.68 77.49±0.78 81.11±0.72 87.56±0.64 71.82±0.33 52.89±0.22 27.28±0.32
GraphPatcher 84.17±0.54 71.65±0.05 81.13±0.68 78.12±0.57 81.23±0.32 89.44±0.79 72.31±0.22 53.21±0.39 28.34±0.24

them, we apply GraphPatcher and TuneUp to state-of-the-art
self-supervised GNNs including DGI [35], GRACE [51], and Pare-
toGNN [17]. We only compare our proposal with TuneUp since
other frameworks require specific model architectures and hence
do not apply to self-supervised GNNs.

Hyper-parameters. We use the optimal settings on all baselines
given by the authors for the shared datasets and a simple two-layer
GCN [19] as the backbone model architecture for all applicable
baselines. Hyper-parameters we tune for GraphPatcher include
learning rate, hidden dimension, the augmentation strength at each
step, and the total amount of patching steps with details described
in Appendix B. Besides, all of our models are trained on a single
RTX3090 with 24GB VRAM; additional hardware information can
also be found in the appendix.

4.2 Performance Comparison with Baselines

We compare GraphPatcher with six state-of-the-art frameworks
that mitigate the degree bias problem and the performances of
all models are shown in Table 1. Firstly we notice that the prob-
lem of degree bias is quite serious across datasets for GCN. The
performances on low-degree nodes are ∼10% lower than those
over high-degree nodes. Comparing GCN with ColbBrew, Tail-
GNN, and TuneUp, we can observe that frameworks that focus

specifically on low-degree nodes can usually enhance GNN’s per-
formance over the lower percentile (e.g., 1.2% accuracy gain on Cora
by TuneUp, 0.74% on Citeseer by ColbBrew, 1.38% on Pubmed by
Tail-GNN, etc.). However, these frameworks fall short on the high-
degree nodes and sometimes perform worse than the vanilla GCN
(e.g., -2.7% accuracy degradation on Cora by Tail-GNN, -11.42% on
Wiki.CS by ColbBrew, and -2.5% on Amazon Photo by TuneUp).
This phenomenon could result from that they unintentionally create
an artificial out-of-distribution scenario, where they only observe
low-degree nodes during the training, leading to downgraded per-
formance for high-degree nodes that GNNs originally perform well
at. Comparing GCN with GTrans and EERM, we observe that they
deliver similar performances as the vanilla GCN does, indicating
that frameworks targeting out-of-distribution scenarios cannot mit-
igate degree biases. Comparing GraphPatcher with all baselines,
we notice that our proposed GraphPatcher consistently improves
the low-degree performance with an average improvement gain
of 2.23 accuracy score. Besides, unlike other frameworks that have
downgraded performance over high-degree nodes, GraphPatcher
can maintain GCN’s original high-degree superiority, due to our it-
erative node patching. On average,GraphPatcher improves GCN’s
overall performance by a 1.4 accuracy score across datasets.

GraphPatcher: Mitigating Degree Bias for

Graph Neural Networks via Test-time Augmentation Conference’17, July 2017, Washington, DC, USA

Table 2: Performance (%) of GraphPatcher and TuneUp for different GNN architectures.

Method Cora Citeseer Pubmed Wiki.CS Am.Photo Co.CS Arxiv

Accuracy on Low-degree Nodes (Lower Percentile)
GCN 73.27±0.01 64.86±0.92 76.88±0.40 72.98±0.50 75.59±0.43 84.59±0.45 63.15±0.13
+TuneUp 74.47±0.34 65.17±0.22 77.18±0.39 72.60±0.75 76.08±0.62 84.68±0.50 63.34±0.32
+GraphPatcher 78.08±0.06 67.27±0.20 78.98±0.21 74.04±0.86 77.84±0.36 86.76±0.84 64.01±0.12

G-Sage 70.57±0.84 67.44±0.11 76.58±0.36 61.83±0.89 76.32±0.33 74.53±0.69 61.64±0.62
+TuneUp 71.47±0.11 67.44±0.21 77.78±0.92 58.46±0.77 78.48±0.89 74.88±0.76 62.43±0.59
+GraphPatcher 72.33±0.21 67.89±0.33 78.93±0.05 61.46±0.40 78.11±0.13 75.14±0.21 62.92±0.28

GAT 73.27±0.51 69.07±0.11 72.37±0.27 73.72±0.64 79.66±0.58 86.93±0.50 63.54±0.20
+TuneUp 76.58±0.07 66.67±0.33 72.07±0.81 72.08±0.20 81.08±0.25 86.72±0.84 63.71±0.31
+GraphPatcher 76.88±0.32 70.87±0.78 74.47±0.63 74.26±0.72 80.05±0.19 89.50±0.93 64.12±0.14

Accuracy on High-degree Nodes (Upper Percentile)
GCN 86.83±0.17 77.25±1.00 80.84±0.76 83.40±0.70 84.07±0.71 90.20±0.37 80.46±0.18
+TuneUp 87.13±0.67 76.95±0.63 81.74±0.49 83.11±0.53 81.57±0.07 90.65±0.86 80.09±0.51
+GraphPatcher 88.02±0.11 76.65±0.18 83.83±0.79 83.49±0.22 84.17±0.97 90.59±0.46 80.61±0.25

G-Sage 82.04±0.01 72.46±0.70 80.24±0.12 60.83±0.18 77.30±0.56 69.24±0.55 78.66±0.08
+TuneUp 80.84±0.36 73.95±0.36 81.14±0.41 60.90±0.05 79.36±0.89 70.12±0.25 79.26±0.51
+GraphPatcher 82.14±0.48 73.22±0.25 81.66±0.46 61.02±0.44 78.57±0.14 70.53±0.68 79.91±0.31

GAT 85.33±0.36 76.65±0.80 81.14±0.20 82.21±0.44 87.84±0.23 91.33±0.81 81.37±0.16
+TuneUp 86.23±0.47 76.65±0.33 80.84±0.02 81.73±0.36 89.02±0.78 92.00±0.04 81.44±0.11
+GraphPatcher 86.53±0.37 76.35±0.39 81.14±0.89 82.34±0.08 87.84±0.56 91.61±0.20 81.49±0.15

We further apply GraphPatcher to other GNN architectures
(i.e., GraphSAGE [8] and GAT [34]) and compare its performance
to TuneUp. We only compare with TuneUp since other baselines
explore specific model architectures that do not allow a different
backbone. From Table 2, we can observe that the issue of degree
bias still exists on GAT and GraphSAGE with a performance gap
between low- and high-degree nodes around ∼10%. Both TuneUp
and GraphPatcher can improve the performance over low-degree
nodes. Specifically, TuneUp on average improves 0.27 low-degree
accuracy for GraphSAGE and 0.40 for GAT across datasets; whereas
GraphPatcher improves 1.13 for GraphSAGE and 1.66 for GAT,
outperforming TuneUp by a large margin.

4.3 Performance of GraphPatcher for

Self-supervised GNNs

To fully demonstrate the effectiveness of GraphPatcher, we also
apply our proposal to self-supervised GNNs, as shown in Table 3.
We can observe that self-supervised learning can mitigate degree
bias by itself, proved by smaller gaps between low- and high-degree
nodes than those of semi-supervised GNNs. Combined with Graph-
Patcher, the degree biases can be further without sacrificing GNN’s
original superiority over high-degree nodes. On average, Graph-
Patcher can enhance the low-degree performance of these three
self-supervised GNNs by 1.78, 0.74, and 1.36 scores respectively.

Table 3: Effectiveness for self-supervised GNNs.

Method Cora Pubmed Wiki.CS

Low-degree Nodes (Lower Percentile)
DGI 78.47±0.37 75.63±0.82 75.86±0.61
+GraphPatcher 79.95±0.53 78.04±0.97 77.31±0.91
GRACE 77.81±0.73 77.80±0.65 74.31±0.63
+GraphPatcher 78.53±0.82 78.49±0.16 75.12±0.34
ParetoGNN 78.85±0.71 78.32±0.33 74.17±0.18
+GraphPatcher 79.91±0.62 79.11±0.89 76.41±0.22

High-degree Nodes (Upper Percentile)
DGI 86.83±0.82 81.14±0.28 81.09±0.81
+GraphPatcher 86.91±0.10 82.31±0.53 80.95±0.19
GRACE 85.03±0.05 78.74±0.84 83.91±0.56
+GraphPatcher 85.12±0.25 79.58±0.31 84.12±0.22
ParetoGNN 87.03±0.84 80.89±0.84 81.57±0.84
+GraphPatcher 87.32±0.27 80.55±0.32 81.78±0.51

4.4 Effectiveness of GraphPatcher for

Enhancing SoTA Method

We apply GraphPatcher to GRAND [5], a strong GNN that utilizes
a random propagation strategy to perform graph data augmentation
and significantly improve the node classification performance. The

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

Table 4: Effectiveness for SoTA.

Method Cora Citeseer Pubmed

Low-degree Nodes (Lower Percentile)
GRAND 80.18±0.64 70.57±0.68 80.48±0.14
+GraphPatcher 81.58±0.45 72.73±0.29 84.68±0.29

High-degree Nodes (Upper Percentile)
GRAND 88.32±0.75 79.64±0.86 83.53±0.52
+GraphPatcher 88.92±0.18 79.54±0.13 84.43±0.21

Overall Performance
GRAND 85.22±0.80 74.90±0.77 82.30±0.41
+GraphPatcher 85.90±0.44 76.10±0.38 84.20±0.26

performance improvement brought by GraphPatcher is shown
in Table 4. We observe that GraphPatcher can still consistently
improve the node classification for GRAND. Specifically, on low-
degree nodes, GraphPatcher can improve 1.40, 2.23, and 4.20 ac-
curacy score on Cora, Citeseer, and Pubmed, respectively. Overall,
GraphPatcher further enhances the SoTA performance on these
three datasets, with an outstanding accuracy score of 85.90, 76.10,
and 84.20. The significant gain from GraphPatcher indicates that
the effectiveness brought by the test-time augmentation is not over-
lapped with the data augmentation during the training.

4.5 Performance w.r.t. # of Patching Nodes

To investigate the necessity of patching multiple nodes, we con-
duct experiments over the number of patching nodes at the test
time. As shown in Figure 3, we notice that the overall performance
gradually increments as the number of patching nodes increases,
demonstrating that multiple patching nodes are required to remedy
the incomplete neighborhood of low-degree nodes. Besides, we
discover that the performance of GraphPatcher saturates with
around four nodes patched, which aligns with our training proce-
dure, where the length of the ego-graph sequence is at most five.
Experiments concerning the number of patching nodes during the
optimization and the number of sampled ego-graphs per corruption
strength (i.e.,𝑀 and 𝐿 in Equation (6)) can be found in Appendix B.

5 DISCUSSIONW.R.T. DIFFUSION MODELS

Both diffusion models and GraphPatcher conduct multiple corrup-
tions to training samples with increasing strengths and generate
examples in an iterative fashion. This scheme is conceptually in-
spired by heat diffusion from physics. However, the motivations
behind them are different, where diffusion models focus on the
generation quality (i.e., fidelity to the original data distribution) but
ours aims at the results brought by our generated nodes (i.e., the
performance improvement). Specifically, diffusion models [9, 28]
aim at learning the probability distribution of the data and accord-
ingly generating examples following the learned distribution. Their
goal is to generate samples that follow the original data distribu-
tion, agnostic of any other factor like the target GNN we have in
our scenario. Whereas for GraphPatcher, we aim at generating

81

82.5

84

1 2 3 4 5

Original Perf.

Cora

79

80.5

82

1 2 3 4 5

Original Perf.

Pubmed

71

72

73

1 2 3 4 5

Original Perf.

Arxiv

Figure 3: Perf. (y-axis) w.r.t. the number of nodes (x-axis).

nodes to ego-nets such that the target GNN models deliver better
predictions when the node degree is low. We mostly care about
performance improvement and the generated node may be very
different from the original nodes in the graph.

6 CONCLUSION

We study the problem of degree bias underlying GNNs and accord-
ingly propose a test-time augmentation framework, namely Graph-
Patcher. GraphPatcher iteratively patches ego-graphs with its
generated virtual nodes to remedy the incomplete neighborhood.
Through our designated optimization scheme, GraphPatcher not
only patches low-degree nodes but also maintains GNN’s origi-
nal superior performance over high-degree nodes. Comprehensive
experiments are conducted over seven benchmark datasets and
our proposal can consistently enhance GNN’s overall performance
by up to 3.6% and low-degree performance by up to 6.5%, outper-
forming all baselines by a large margin. Besides, GraphPatcher
can also mitigate the degree bias issue for self-supervised GNNs.
When applied to graph learning methods with state-of-the-art per-
formance (i.e., GRAND), GraphPatcher can further improve the
SoTA performance by a large margin, indicating that the effective-
ness brought by the test-time augmentation is not overlapped with
existing inductive biases.

LIMITATION AND BROADER IMPACT

One limitation is the additional overhead entailed by generating ego-
graphs. To address this limitation, we generate all ego-graphs before
the optimization to avoid duplicated computations. This operation
takes more hard-disk storage, which is relatively cheap compared
with computational resources. Furthermore, we observe no ethical
concern entailed by our proposal, but we note that both ethical
or unethical applications based on graphs may benefit from the
effectiveness of our work. Care should be taken to ensure socially
positive and beneficial results of machine learning algorithms.

GraphPatcher: Mitigating Degree Bias for

Graph Neural Networks via Test-time Augmentation Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] Murat Seckin Ayhan and Philipp Berens. 2018. Test-time data augmentation for
estimation of heteroscedastic aleatoric uncertainty in deep neural networks. In
Medical Imaging with Deep Learning.

[2] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral
clustering with graph neural networks for graph pooling. In Procs. of ICML.

[3] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In Procs. of WWW.

[4] Yujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. 2022. Heterogeneous
temporal graph neural network. In Procs. of SDM.

[5] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang
Yang, Evgeny Kharlamov, and Jie Tang. 2020. Graph random neural networks
for semi-supervised learning on graphs. Procs. of NeurIPS (2020).

[6] Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil
Shah, and Tong Zhao. 2023. Linkless link prediction via relational distillation. In
Procs. of ICML.

[7] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang,
and Nitesh V Chawla. 2021. Few-shot graph learning for molecular property
prediction. In Procs. of WWW.

[8] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Procs. of NeurIPS.

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Procs. of NeurIPS (2020).

[10] Weihua Hu, Kaidi Cao, Kexin Huang, Edward W Huang, Karthik Subbian, and
Jure Leskovec. 2022. TuneUp: A Training Strategy for Improving Generalization
of Graph Neural Networks. arXiv (2022).

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. In Procs. of NeurIPS.

[12] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for Pre-training Graph Neural Networks. In
Procs. of ICLR.

[13] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2023.
Empowering graph representation learning with test-time graph transformation.
In Procs. of ICLR.

[14] Mingxuan Ju, Yujie Fan, Chuxu Zhang, and Yanfang Ye. 2023. Let graph be
the go board: gradient-free node injection attack for graph neural networks via
reinforcement learning. In Procs. of AAAI.

[15] Mingxuan Ju, Shifu Hou, Yujie Fan, Jianan Zhao, Yanfang Ye, and Liang Zhao.
2022. Adaptive kernel graph neural network. In Procs. of AAAI.

[16] Mingxuan Ju, Wenhao Yu, Tong Zhao, Chuxu Zhang, and Yanfang Ye. 2022.
Grape: Knowledge Graph Enhanced Passage Reader for Open-domain Question
Answering. In Findings of EMNLP.

[17] Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and
Chuxu Zhang. 2023. Multi-task Self-supervised Graph Neural Networks Enable
Stronger Task Generalization. In Procs. of ICLR.

[18] Ildoo Kim, Younghoon Kim, and Sungwoong Kim. 2020. Learning loss for test-
time augmentation. Procs. of NeurIPS (2020).

[19] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. In Procs. of ICLR.

[20] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
Procs. of ICLR.

[21] Gang Liu, Tong Zhao, Eric Inae, Tengfei Luo, and Meng Jiang. 2023. Semi-
Supervised Graph Imbalanced Regression. In Procs. of KDD.

[22] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-gnn: Tail-node graph
neural networks. In Procs. of SIGKDD.

[23] Philip M Long and Hanie Sedghi. 2020. Generalization bounds for deep convolu-
tional neural networks. In Procs. of ICLR.

[24] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. 2022. Is homophily a necessity
for graph neural networks?. In Procs. of ICLR.

[25] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks of
substitutable and complementary products. In Procs. of SIGKDD.

[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations
of machine learning. MIT press.

[27] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. Pinnersage: Multi-modal user embedding framework
for recommendations at pinterest. In Procs. of SIGKDD.

[28] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Procs. of CVPR.

[29] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine

(2008).
[30] Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and John Guttag. 2021.

Better aggregation in test-time augmentation. In Procs. of CVPR.

[31] William Shiao, Uday Singh Saini, Yozen Liu, Tong Zhao, Neil Shah, and Evan-
gelos E Papalexakis. 2023. CARL-G: Clustering-Accelerated Representation
Learning on Graphs. Procs. of KDD (2023).

[32] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal,
Prasenjit Mitra, and Suhang Wang. 2020. Investigating and mitigating degree-
related biases in graph convoltuional networks. In Procs. of CIKM.

[33] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. 2020.
Graph clustering with graph neural networks. arXiv (2020).

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. In Procs. of ICLR.

[35] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax.. In Procs. of ICLR.

[36] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and
Tom Vercauteren. 2019. Aleatoric uncertainty estimation with test-time aug-
mentation for medical image segmentation with convolutional neural networks.
Neurocomputing (2019).

[37] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. 2022. Handling Distri-
bution Shifts on Graphs: An Invariance Perspective. In Procs. of ICLR.

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? In Procs. of ICLR (2018).

[39] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In Procs. of ICML.

[40] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Procs. of SIGKDD.

[41] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
contrastive learning automated. In Procs. of ICML.

[42] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. In Procs. of

NeurIPS.
[43] Sukwon Yun, Kibum Kim, Kanghoon Yoon, and Chanyoung Park. 2022. LTE4G:

Long-Tail Experts for Graph Neural Networks. In Procs. of CIKM.
[44] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. In Procs. of NeurIPS.
[45] Zaixi Zhang, Qi Liu, HaoWang, Chengqiang Lu, and Chee-Kong Lee. 2021. Motif-

based graph self-supervised learning for molecular property prediction. Procs. of
NeurIPS (2021).

[46] Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. 2021. A synergistic
approach for graph anomaly detection with pattern mining and feature learning.
IEEE Transactions on Neural Networks and Learning Systems (2021).

[47] Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann,
Neil Shah, and Meng Jiang. 2023. Graph data augmentation for graph machine
learning: A survey. IEEE DEBULL (2023).

[48] Tong Zhao, Gang Liu, DahengWang,Wenhao Yu, andMeng Jiang. 2022. Learning
from counterfactual links for link prediction. In Procs. of ICML.

[49] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang
Wang, and Karthik Subbian. 2021. Cold brew: Distilling graph node representa-
tions with incomplete or missing neighborhoods. In Procs. of ICLR.

[50] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han.
2021. Transfer learning of graph neural networks with ego-graph information
maximization. In Procs. of NeurIPS.

[51] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. In ICML Workshop on Graph

Representation Learning and Beyond.

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

A DATASET DESCRIPTION

We evaluate our proposed GraphPatcher as well as other frame-
works that mitigate the degree bias problem on seven real-worlds
datasets spanning various fields such as citation network and mer-
chandise network. Their statistics are shown in Table 5. For Cora,
Citeseer and, Pubmed, we explore the community acknowledged
public splits (i.e., fixed 20 nodes per class for training, 500 nodes for
validation, and 1000 nodes for testing); whereas for ogbn-arxiv,
we use the API from Open Graph Benchmark (OGB)2 and explore
the provided splits. For Wiki.CS, Amazon-Photo, and Coauthor-CS,
we randomly select 10% nodes for training, another 10% for valida-
tion, and the remaining 80% for testing. We use the API from Deep
Graph Library (DGL)3 to load all datasets.

Table 5: Dataset Statistics.

Dataset # Nodes # Edges # Features Avg. Degree Split
Cora 2,708 5,429 1,433 2.0 Public Split
Citeseer 3,327 4,732 3,703 1.4 Public Split
Pubmed 19,717 88,651 500 4.5 Public Split
Wiki-CS 11,701 216,123 300 18.5 10%/10%/80%
Amazon-Photo 7,650 119,043 745 15.6 10%/10%/80%
Coauthor-CS 18,333 81,894 6,805 4.5 10%/10%/80%
ogbn-arxiv 169,343 1,166,243 128 6.9 Public Split

B GRAPHPATCHER CONFIGURATION AND

EXPERIMENT ON HYPER-PARAMETERS

B.1 GraphPatcher Configuration

The architecture of GraphPatcher consists of two parts; the first
part is a 2-layer GCN encoder that takes an ego-graph as input
and vectorizes its nodes and the second part is an MLP that takes
the representation of the anchor node and outputs the generated
feature for the virtual patching node. To ensure the reproducibility,
we also provide the detailed hyper-parameter configurations of
GraphPatcher for all datasets, as shown in Table 6. Besides, we
use an early stopping strategy to decide the number of optimization
steps, where the optimization stops if the validation loss stops
decreasing for two consecutive steps.

Table 6: Hyper-parameters used for GraphPatcher.

Hyper-param. Cora Citeseer Pubmed Wiki.CS Am.Photo Co.CS Arxiv

Augmentation strength 0.3 0.3 0.3 0.3 0.3 0.3 0.1
Patching step 3 3 3 3 3 3 5
of sampled graphs 10 used for all datasets
Batch size 64 64 64 8 16 4 16
Accumulation step 16 16 16 32 16 16 64
Learning rate 1e-4 used for all datasets
Optimizer AdamW with a weight decay of 1e-5 used for all datasets

B.2 Experiment on Hyper-parameters

The hyper-parameters we tune forGraphPatcher include the num-
ber of patching nodes during the testing time, learning rate, hidden
dimension, the augmentation strength at each step, and the total
2https://ogb.stanford.edu
3https://www.dgl.ai

77

77.5

78

78.5

1 2 3 4 5
70

71

72

1 2 3 4 5

80

80.5

81

81.5

1 2 3 4 5
88

88.5

89

89.5

1 2 3 4 5

Wiki.CSCiteseer

Co.CSAm. Photo

Original Perf.

Original Perf.

Original Perf.

Original Perf.

Figure 4: Overall perf. (y-axis) w.r.t. the number of patching

nodes (x-axis).

65

70

75

80

85

90

arxiv Cora Pubmed
1.00E-03 5.00E-04 1.00E-04 5.00E-05

Ac
c(
%
)

(a) Accuracy w.r.t. learning rate

65

70

75

80

85

90

arxiv Cora Pubmed
64 128 256 1024

(b) Accuracy w.r.t. hidden dimension

65

70

75

80

85

90

arxiv Cora Pubmed
0.1 0.2 0.3 0.4

(c) Accuracy w.r.t. augmentation strength

Ac
c(
%
)

Ac
c(
%
)

Ac
c(
%
)

65

70

75

80

85

90

arxiv Cora Pubmed
1 5 10 20

(d) Accuracy w.r.t. # of sampled graphs

Figure 5: GraphPatcher’s sensitivity to different hyper-

parameters.

amount of patching steps. Experiments w.r.t. the number of patch-
ing nodes during the testing time has been showcased in Figure 3
and here we also append the results for the other four datasets, as
shown in Figure 4. We observe similar trends as the aforementioned
three datasets exhibit, where the performance of GraphPatcher
improves as the number of patching nodes increases and the gain
saturates with 4 to 5 nodes patched.

We also conduct experiments w.r.t. learning rate, hidden dimen-
sion, the augmentation strength at each step, and the total amount
of patching steps during the training.We tune the hidden dimension
by conducting a grid search over common selections of [64, 128, 256,
1024] hidden units; we tune the learning rate similarly by searching
over [1e-3, 5e-4, 1e-4, 5e-5]; and we tune the augmentation strength
by searching over [0.1, 0.2, 0.3, 0.4].

The hidden dimension refers to the intermediate dimension of
the 2-layer GCNs of GraphPatcher. GraphPatcher is constructed
by a 2-layer GCN and features for virtual nodes are generated by a
following multi-layer perceptron with the same hidden dimension.
To reduce the search complexity, we explore an arithmetic sequence
for the augmentation strength (i.e., the difference between any two
consecutive strengths is the same) and set the total amount of patch-
ing steps during the training to ⌊ 1𝑡 ⌋. For instance, an augmentation
strength of 0.3 would lead to a 3-step training with augmentation
strength of 0.3, 0.6, and 0.9 respectively. GraphPatcher’s sensitiv-
ity to these hyper-parameters is shown in Figure 5. Specifically, in

https://ogb.stanford.edu
https://www.dgl.ai

GraphPatcher: Mitigating Degree Bias for

Graph Neural Networks via Test-time Augmentation Conference’17, July 2017, Washington, DC, USA

Figure 5.(a) we can observe that across datasets, a large learning rate
(i.e., 1e-3) leads to sub-optimal performance and GraphPatcher
achieves the best performance with a learning rate of 1e-4. We also
investigate GraphPatcher’s sensitivity to the number of hidden
dimensions (i.e., the model size). In Figure 5.(b), we notice that for
large graphs like Arxiv, the performance gradually increases as the
model size enlarges. And for small and medium graphs like Cora
and Pubmed, the performance saturates with a hidden dimension of
128. Besides, in Figure 5.(c) we study GraphPatcher’s performance
w.r.t. the augmentation strength (which can also be interpreted
as the number of patching steps as described previously). We can
observe that, for small and medium graphs, strong augmentation
strength leads to better performance, due to the sparsity of the
graph structures. Whereas for large graphs, small augmentation
strength delivers good performance. Furthermore, to prove the effec-
tiveness of our proposed training scheme with multiple ego-graphs,
we train GraphPatcher with different numbers of sampled graphs
(i.e., 𝐿 in Equation (6)), with the performance shown in Figure 5.(d).
We can observe that without our proposed sampling strategy (i.e.,
the first column with 𝐿 = 1), the performance of GraphPatcher
degrades significantly. As the number of sampled graphs gradually
increases, the performance keeps improving and saturates with
𝐿 = 10, empirically proving the effectiveness of the exploration of
multiple ego-graphs for the same corruption strength.

B.3 Hardware and Software Configuration

We conduct experiments on a server having one RTX3090 GPUwith
24 GB VRAM. The CPU we have on the server is an AMD Ryzen
3990X with 128GB RAM. The software we use includes DGL 1.9.0
and PyTorch 1.11.0. As for the baseline models that we compare
GraphPatcher with, we explore the implementations provided by
code repositories listed as follows:
• Tail-GNN [22]: https://github.com/shuaiOKshuai/Tail-GNN.
• ColbBrew [49]: https://github.com/amazon-science/gnn-tail-
generalization.

• EERM [37]: https://github.com/qitianwu/GraphOOD-EERM.
• GTrans [13]L https://github.com/ChandlerBang/GTrans.
• DGI [35]: https://github.com/dmlc/dgl/tree/master/examples/pytorch/
dgi.

• GRACE [51]: https://github.com/dmlc/dgl/tree/master/examples/
pytorch/grace.

• ParetoGNN [17]: https://github.com/jumxglhf/ParetoGNN.
We sincerely appreciate the authors of theseworks for open-sourcing
their valuable code and researchers at DGL for providing reliable
implementations of these models. For TuneUp [10], since the au-
thors have not released the code yet, we manually implement it by
ourselves, with a similar performance as reported in its original
paper.

C PROOF TO THEOREM 1

Here we re-state Theorem 1 before diving into its proof:
Theorem 1. Assuming the parameters of GraphPatcher are ini-

tialized from the set 𝑃𝛽 = {𝝓 : | |𝝓 − N(0 |𝝓 | ; 1 |𝝓 |) | |𝐹 < 𝛽} where
𝛽 > 0, with probability at least 1 − 𝛿 , for all 𝝓 ∈ 𝑃𝛽 , the error bound

(i.e., E(L
patch

) − L
patch

) is O(𝛽
√︃

|𝝓 |
𝐿

+
√︃

log(1/𝛽)
𝐿

).

Proof. To prove Theorem 1, we need the following lemma,
which has been broadly utilized in the literature of generalization
error bound [23, 26].

Lemma 1. Suppose a set 𝑃 of functions is (𝐵,𝑑)-Lipschitz param-

eterized for 𝐵 > 0 and 𝑑 ∈ N with input from a distribution 𝐷 and

output in (0, 1). There exist a constant 𝑐 such that for all 𝑛 ∈ N, for
any 𝛿 > 0, if 𝑆 is obtained by sampling 𝑛 times independently from

𝐷 , with probability at least 1 − 𝛿 , for all 𝐵 and 𝑓 ∈ 𝑃 , we have:

E𝑑∼𝐷 [𝑓 (𝑑)] − E𝑆 [𝑓] ≤ 𝑐 ·
(
𝐵

√︂
𝑑

𝑛
+
√︂

log(1/𝛿)
𝑛

)
. (8)

In order to prove E(Lpatch) − Lpatch is O(𝛽
√︃

|𝝓 |
𝐿

+
√︃

log(1/𝛽)
𝐿

),
we need to show that Lpatch is Lipschitz continuous. Lpatch, as
discussed in Section 3.2.1, is a regularized cross-entropy formulated
as (y1 + 𝜖) ·

(
log(y2 + 𝜖) − log(y1 + 𝜖)

)
. In this work, y1 and y2

refers to the prediction distribution (i.e., 0 < y1 < 1) delivered by
the GNN we aim at improving. Hence, we need to show that for
given a specific y1, for any two y𝑎2 , y

𝑏
2 ∈ {y′2 : 0 < y′2 < 1} and

𝐾 ∈ R+, we have������(y1+𝜖) ·log(y𝑎2 + 𝜖y1 + 𝜖
)−(y1+𝜖) ·log(

y𝑏2 + 𝜖
y1 + 𝜖

)
������
𝐹
≤ 𝐾 ·

������y𝑎2−y𝑏2 ������
𝐹

(9)������(y1 + 𝜖) · (log(y𝑎2 + 𝜖y1 + 𝜖
) − log(

y𝑏2 + 𝜖
y1 + 𝜖

)
) ������

𝐹
≤ 𝐾 ·

������y𝑎2 − y𝑏2
������
𝐹

(10)������(y1 + 𝜖) · (log(y𝑎2 + 𝜖
y𝑏2 + 𝜖

)
) ������

𝐹
≤ 𝐾 ·

������y𝑎2 − y𝑏2
������
𝐹

(11)

Given the fact that log(·) is strictly concave, Equation (11) holds
and hence Lpatch is Lipschitz continuous. We can then directly
apply Lemma 1 to show that Theorem 1 holds. □

https://github.com/shuaiOKshuai/Tail-GNN
https://github.com/amazon-science/gnn-tail-generalization
https://github.com/amazon-science/gnn-tail-generalization
https://github.com/qitianwu/GraphOOD-EERM
https://github.com/ChandlerBang/GTrans
https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi
https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi
https://github.com/dmlc/dgl/tree/master/examples/pytorch/grace
https://github.com/dmlc/dgl/tree/master/examples/pytorch/grace
https://github.com/jumxglhf/ParetoGNN

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Preliminary
	3.2 The Proposed Framework: GraphPatcher

	4 Experiments
	4.1 Experimental Setting
	4.2 Performance Comparison with Baselines
	4.3 Performance of GraphPatcher for Self-supervised GNNs
	4.4 Effectiveness of GraphPatcher for Enhancing SoTA Method
	4.5 Performance w.r.t. # of Patching Nodes

	5 Discussion w.r.t. Diffusion Models
	6 Conclusion
	References
	A Dataset Description
	B GraphPatcher Configuration and Experiment on Hyper-parameters
	B.1 GraphPatcher Configuration
	B.2 Experiment on Hyper-parameters
	B.3 Hardware and Software Configuration

	C Proof to Theorem 1

