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ABSTRACT
The widespread application of online payment services has trans-
formed financial transactions, while its accessibility and conve-
nience greatly increases the vulnerabilities to financial crimes like
money laundering, threatening economic integrity and societal
stability. Traditional financial risk control mechanisms rely on two-
stage processes: fraudster detection and expert-driven report writ-
ing. However, they struggle under the growing transactional data
volume and lacks standardized writing protocol, leading to ineffi-
ciency and inconsistency. To address these challenges, we introduce
RiskRAG, a data-centric framework that automates and standard-
izes financial risk control from detection to reporting, leveraging
Large LanguageModels (LLMs). To ensure the quality of reports, our
RiskRAG enhances LLM’s generative capabilities by retrieving sim-
ilar reports from the distilled risk knowledge base, RiskKB, serving
as prompts for LLM. Deployed in a real-world anti-money laun-
dering scenario, our model demonstrates a substantial reduction
in report writing time, achieving 72% usage rate. Comprehensive
experimental results demonstrate the effectiveness of our RiskRAG,
significantly improving the analysis accuracy and reducing halluci-
nations of LLM.
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1 INTRODUCTION
Nowadays online financial services have transformed the economic
landscape by offering significant convenience and efficiency in
transactions. However, their rapid proliferation, convenience, and
accessibility make them susceptible to financial crimes, such as
money laundering [3, 8, 9], cash-out fraud [5, 18] and user de-
fault [11, 12]. This not only undermines the integrity of financial
institutions but also poses huge risks to the overall economic sys-
tem, facilitating criminal activities that threaten societal well-being
and financial stability.

To combat the financial risks, as shown in Figure 1 (a), current
transaction systems typically employ machine learning models to
detect fraudsters based on their suspicious transaction patterns.
For each fraudster, experts will conduct thorough analysis and
write reports for regulatory authorities. In this process, previous re-
searchers have primarily focused on the design of detection models,
i.e., model-centric view, and often neglect the subsequent reporting
phase. However, this two-stage workflow is becoming increasingly
impractical due to two key reasons: First, with the surge in financial
transaction data, manually analyzing and writing reports is not only
time-consuming and labor-intensive, but also heavily reliant on
expert knowledge, fail to meet the real-world requirement. Second,
different experts have varying writing styles and protocols, leading
to the inconsistency and unreliability of the reports. Overcoming
above obstacles is crucial for improving automation, standardiza-
tion, and transparency in financial risk control, thereby facilitating
more effective collaboration across the industry.

Recently, Large Language Models (LLMs) like ChatGPT 1, have
shown exceptional abilities of complex text understanding and
generation [15], and have revolutionized diverse fields, such as

1https://openai.com/blog/chatgpt
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Figure 1: Comparison of (a) traditional two-stage financial
risk control process involving model detection then manual
writing report, and (b) our proposed data-centric framework
for automated financial risk control with LLM.

healthcare [10], law [2], and finance [16, 17]. These LLMs, leverag-
ing extensive domain data, can be further enhanced by retrieving
augmented generation (RAG) from external knowledge bases [4] or
fine-tuning LLM [6]. Yet, their application in financial risk is yet to
be explored. A question naturally arises: Can we automate the whole
financial risk control with LLM? Specifically, we aim to generate
reports with LLMs and transform the current two-stage, labor in-
tensive financial risk control process into an end-to-end, automated
framework. However, it is non-trivial to build such framework due
to several challenges. (1) How can LLMs acquire the expert knowl-
edge required for financial risk analysis? The limited quantity of
risk reports is insufficient for fine-tuning LLMs, and manual reports
fail to be used for RAG due to varied styles and protocols, leading
to more hallucinations [7], especially for smaller, locally deployed
LLMs. (2) How can we build a standardized and automated process
for financial risk control? This process requires the creation of a
transparent and efficient workflow, including data collection, re-
port generation, report scoring, and model update. It involves the
participation of detection models, LLMs, and human experts, and
needs to support regular updates to new risk patterns to maintain
performance over time.

To address the challenges and promote the automation, stan-
dardization, and transparency in financial risk control, we propose
RiskRAG framework as shown in Figure 1 (b), featured for:
• A data-centric framework: The framework begins with the iden-
tification of potential fraudsters from extensive data and extraction
of their unusual transaction activities. Leveraging our constructed
Risk Knowledge Base (RiskKB), LLM can analyze the potential risks
within the extracted activities then generate reports. Before submit-
ting, human experts will review and revise the low-score reports,
then update them to RiskKB, enabling our RiskRAG to maintain its
performance over time.
• Distillation-based RAG method: To ensure the quality of reports,

RiskRAG enhances our local LLM’s generative capabilities by re-
trieving similar reports from RiskKB, which is a risk knowledge
base distilled from teacher LLM and human expert.
• Experimental results demonstrate that our RiskRAG can signifi-
cantly improve the precision and recall of financial risk analysis on
both macro-level content analysis and micro-level detail compari-
son, alleviating the hallucinations of LLM.
• Upon online deployment in real-world anti-money laundering
scenario, our framework has achieved an adoption rate of 72%,
highlighting its considerable practical utility and broad acceptance
in reality.

2 THE PROPOSED RISKRAG
In this section, we introduce the RiskRAG framework, a data-centric
Retrieval-Augmented Generation approach that transforms the
financial risk control process into an end-to-end paradigm.

2.1 Formalization of Problem
To integrate the two-stage process, we redefine the financial risk
detection and reporting phases as follows.

Financial Risk Detection. In detection phase, the goal of financial
institutions is to identify fraudsters from the extensive transac-
tion data, represented as D = {𝐷1, . . . , 𝐷𝑁 } for all 𝑁 users. The
detection scope covers various tasks, such as money laundering,
gambling, and cash-out fraud, with each employing different mod-
els. Taking the widely utilized rule engine as an example, for user
𝑖 , the rule engine F predict whether user is financial fraudster
from the user’s transaction history 𝐷𝑖 = {𝑑1, . . . , 𝑑𝑛}. Rule engine
F (·) consists of a set of rules {𝑓1, 𝑓2, . . . , 𝑓𝑚}, where each rule 𝑓𝑗
is a function that evaluates to either true or false based on certain
conditions applied to user behaviors:

𝑓𝑗 : 𝐷𝑖 → {True, False}. (1)

Taking money laundering as an example, a rule could be "single
transaction amount exceeding a threshold", or more complex condi-
tions, such as "the proportion of overnight transactions that exceed
a certain percentage threshold". Finally, the rule engine outputs a
set of financial fraudsters whose activities violate multiple rules.

Financial Risk Reporting. In traditional reporting phase, given the
transaction behaviors 𝐷𝑖 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} for fraudster 𝑖 , human
experts typically manually write a report 𝑇𝑖 , which can be viewed
as a narrative text 𝑇𝑖 = {𝑤1,𝑤2, . . . ,𝑤𝑡 }. However, for the same
fraudster 𝑖 , reports written by different experts exhibit significant
differences in style and content, i.e., considerable variance of𝑇𝑖 . This
variance hinders the standardization and stability of the process,
and also not supports the accumulation of deeper knowledge.

End-to-End Standard Pipeline. To integrate the two stages, for the
detected fraudster 𝑖 , we combine the suspicious behaviors �̃�𝑖 ⊆ 𝐷𝑖 ,
with the corresponding rules F , resulting in the behavior descrip-
tion𝑄𝑖 . Then𝑄𝑖 is used to query the large language models to gen-
erates the corresponding report 𝑇𝑖 , i.e., 𝑇𝑖 = 𝐿𝐿𝑀 (𝑄𝑖 ). To further
standardize the whole process, we constrain the generated reports
to involve risk points 𝑅 and evidences 𝐸 as follows: For an fraudster
user 𝑖 , the report 𝑇𝑖 is a narrative text that synthesizes the analysis
derived from 𝑄𝑖 , integrating identified risk points 𝑅𝑖 ⊆ 𝑅 with
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Figure 2: The overall framework of the proposed RiskRAG.

their corresponding evidential transaction descriptions 𝐸𝑖 ⊆ 𝐸. The
set of all risk points, denoted as 𝑅 = {𝑟1, . . . , 𝑟𝑛}, encapsulates the
underlying risks associated with suspicious transaction behaviors,
such as "Large Withdrawals" and "Consistent Transaction Pattern".
The evidence set 𝐸 is subdivided into subsets corresponding to
key transactional elements: {𝐸Time, 𝐸Type, 𝐸Amt, 𝐸Qty}, which rep-
resent the time of the transaction, its type (such as Transfer, Refund,
Recharge, Consumption, etc.), the transaction amount, and other
quantities (like the number of credit cards), respectively.

2.2 Risk Knowledge Base Construction
To guide our local student LLM towards generating reports based
on risk points 𝑅 and evidence 𝐸, we propose the construction of a
risk knowledge base, referred to as RiskKB. This knowledge base
will archive exemplary query-report pairs {(𝑄𝑖 ,𝑇𝑖 )}

𝑁𝑝

𝑖=1, serving as
contextual prompt for student LLM during deployment to augment
the generation of standardized reports. Here, each query 𝑄𝑖 is de-
rived from data �̃�𝑖 and rule engine F , and the corresponding 𝑇𝑖
represents the desired report involving risk points𝑅 and transaction
elements 𝐸.

Query Construction. For a fraudster 𝑖 in RiskKB, query𝑄𝑖 describ-
ing the suspicious transaction �̃�𝑖 , can be formally represented as a
sequence of words, denoted as 𝑄𝑖 = {𝑤1,𝑤2, . . . ,𝑤𝑞𝑖 }. The genera-
tion process of query 𝑞𝑖 is non-parametric, primarily involving the
matching of predefined rules F with specific transaction values �̃�𝑖 .
Formally, this can be represented as a function𝑔 : F ×𝐷 → 𝑄 . Each
rule 𝑓𝑗 in F is associated with some specific transaction values, and
the function 𝑔 will generate query by combine these rules to their
respective values.

Report Construction. Initially, experts are engaged to manually
analyze risk points based on the query and extract key elements
𝐸 to construct evidence, subsequently crafting several reports 𝑇 .
This process ensures consistency in the style of manually written

reports. The anonymized pairs of query and 𝑇 are then utilized as
examples for teacher LLM ChatGPT in generating the remainder
of the reports. In the final step, the produced reports are manu-
ally reviewed, and the correct (𝑄,𝑇 ) pairs are archived in RiskKB,
enriching the knowledge base.

Global Risk Point Set 𝑅. From the reports stored in RiskKB, we
systematically extract all risk points to establish the comprehensive
risk point set 𝑅. This set serves to encapsulate the knowledge of do-
main experts, which will facilitate model updates and maintenance
by directly incorporating emerging risk points into 𝑅.

2.3 Retrieval Augmented Generation
With the constructed RiskKB, we can retrieve similar suspicious
users for new user through similarity retrieval and use their query-
report pairs (𝑄,𝑇 ) to guide the student LLM in generating reports
for the new user.

Indexing and Embedding. An offline indexing procedure is con-
ducted to enhance the retrieval efficiency. Querieswithin the RiskKB
are transformed into high-dimensional vector spaces via an embed-
ding model, thus facilitating nuanced similarity assessments.

𝒒 𝑗 = Emb(𝑄 𝑗 ), ∀𝑄 𝑗 ∈ RiskKB. (2)

These query embeddings, alongside their corresponding report
texts, are stored as key-value pairs, such as (𝒒 𝑗 ,𝑇𝑗 ), establishing a
foundation for efficient and scalable search functionalities.

RiskKB Retrieval. For a new fraudster 𝑖 , we intially construct
query by 𝑄𝑖 = 𝑔(�̃�𝑖 , F ), then employ the embedding model to
generate its vector representation 𝒒𝑖 . The retrieval process, driven
by similarity metrics, then selects the top 𝐾 most similar queries
from RiskKB, formalized as:

{𝑄}𝐾 = arg Top−𝐾
𝑄 𝑗 ∈RiskKB

sim(𝒒𝑖 , 𝒒 𝑗 ), (3)
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where the employed similarity metric sim(·) is defined as the cosine
similarity. Upon identifying the top 𝐾 similar queries {𝑄}𝐾 from
RiskKB, the system retrieves their corresponding query-report pairs,
denoted as {(𝑄,𝑇 )}𝐾 .

During the generation phase, the system utilizes the retrieved
query-report pairs {(𝑄,𝑇 )}𝐾 as contextual input in a multi-turn
dialogue setting for the student LLM. This approach facilitates the
construction of a detailed report 𝑇𝑖 for a new user 𝑖:

𝑇𝑖 = LLM({(𝑄,𝑇 )}𝐾 | |𝑄𝑖 ), (4)

where the LLM implicitly follows the constrained generative par-
adigm observed within {(𝑄,𝑇 )}𝐾 , generate report for new user 𝑖
that align with established criteria.

In this way, the integration of RiskKB not only ensures consis-
tency in report generation but also imbues the automated reports
with a level of detail and specificity previously attainable only
through manual analysis.

2.4 RiskKB Update
In the field of financial risk control, where security is paramount,
reports generated by LLMs inevitably need human verification be-
fore submission to regulatory. From a data-centric perspective, we
integrate above human review and revision process into the life-
cycle of the project as a critical component of maintaining and
updating the RiskKB. Specifically, the reports with low scores, after
human revision, can be incorporated into RiskKB. Obviously, such
framework facilitates the accumulation of substantial financial risk
knowledge, which can be leveraged for a variety of tasks, includ-
ing question-answering systems, further enhancing the utility and
scalability of the framework.

3 EXPERIMENT
3.1 Experimental settings

Datasets. We evaluate our RiskRAG on a real-world Anti-Money
Laundering (AML) scenario, where money laundering refers to
the process by which individuals conceal the origins of illegally
obtained money. Our AML dataset, derived from real online pay-
ment services, is coupled with a corresponding rule engine model.
Utilizing data from 279 identified fraudsters, we construct a com-
prehensive Risk Knowledge Base (RiskKB). Additionally, another
set of data from 547 fraudsters is employed for the offline testing
of our model.

Baselines. To evaluate the effectiveness of our RiskRAG in gen-
erating Anti-Money Laundering (AML) reports, we compare with
several baselines:
• Zeroshot: This baseline tests the LLM’s intrinsic ability to gen-
erate AML reports by appending suspicious transaction data to a
prompt without any examples.
• Fewshot with Original Reports (Fewshot_Org): This model ran-
domly select five original AML reports (written by human expert)
as prompt.
• RAG with Original Reports (RAG_Org): Leveraging the Retrieval-
AugmentedGeneration framework, thismethod enhances the LLM’s
context with five similar original reports.
• Few-shot Learning with RiskKB (Fewshot_RiskKB): This model

randomly select five examples from our RiskKB as prompt.

LLMs. For our LLM implementation, we utilize the GPT-4, a
175B-parameter model, as the teacher model to distill RiskKB for
our tasks. The student model is Baichuan2-13B [1], a smaller yet
powerful model.

Evaluation. Inspired by [14], our evaluation metrics are designed
to quantify the quality of generated reports, which can be divided
into two categories: micro evaluation and macro evaluation, each
addressing different aspects of the report quality. For the micro eval-
uation, we calculate the precision, recall, and F1 scores of essential
elements such as time, transaction type, amount, and quantity in
AML reports. For the macro evaluation, human experts will assess
the accuracy of the generated content.

3.2 Micro Evaluation Results
We compute the element-aware precision and recall, which sep-
arately reflect the accuracy of the key elements included in the
report and the hit rate of the key elements in the query.
• Element Precision: It measures the proportion of correctly gen-
erated elements to the total elements generated by LLM. If the
elements in generated report 𝑇𝑖 do not present in the input query
𝑄𝑖 , it suggests the existence of hallucinations within the report,
yielding a lower precision score.
• Element Recall: It measures the proportion of correctly generated
elements to the total elements in query. Lower recall indicates pos-
sible omissions in the 𝑇 ’s generation.
• Element F1 Score: The harmonic mean of precision and recall for
elements, penalizing unbalanced performance.
Taking element Date as an example, if 𝐸𝑇 represents the set of ele-
ments in the generated report and 𝐸𝑄 represents the set of elements
in the corresponding query:

PrecisionDate =
|𝐸𝑇 ∩ 𝐸𝑄 |

|𝐸𝑇 |
,

RecallDate =
|𝐸𝑇 ∩ 𝐸𝑄 |

|𝐸𝑄 |
,

𝐹1Date = 2 · PrecisionDate · RecallDate
PrecisionDate + RecallDate

.

The results of our experiments, as shown in Table 1, lead to
several key observations:

(1) Our RiskRAG can outperform all baselines in most metrics.
This success can be attributed to the effective use of the
distilled RiskKB and Retrieval-Augmented Generation (RAG)
in our approach.

(2) In terms of precision, our RiskRAG consistently achieves
scores above 95%. This indicates that, with finely distilled
data and retrieval mechanisms, our approach can signifi-
cantly reduce the instances of hallucination typically associ-
ated with large language models.

(3) It is clear thatmethods based on original reports, Fewshot_Org
and RAG_Org, suffer a significant drop in performance, of-
ten underperforming even Zeroshot method. This is because
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Table 1: The results on Precision (P), Recall (R), and F1 score of four elements.

Model Date Amount Quantity Type
P R F1 P R F1 P R F1 P R F1

Zeroshot 1.000 0.457 0.627 0.965 0.330 0.492 0.878 0.426 0.574 0.936 0.882 0.908
Fewshot_Org 0.174 0.129 0.148 0.636 0.116 0.196 0.428 0.113 0.179 0.830 0.752 0.789
RAG_Org 0.400 0.194 0.261 0.736 0.162 0.265 0.414 0.183 0.253 0.824 0.779 0.801
Fewshot_RiskKB 0.941 0.642 0.763 0.994 0.688 0.814 0.936 0.694 0.797 0.985 0.778 0.869
RiskRAG 0.966 0.629 0.762 0.995 0.698 0.821 0.959 0.705 0.813 0.989 0.782 0.873
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(b) Recall Evaluation.

Figure 3: Quantitative analysis by human evaluator. The order of report quality ranking is as follows: A > B > C > D.

that the high variance within the original reports will lead to
serious hallucinations when serving as contextual prompt.

(4) While the zero-shot approach may appear to have high preci-
sion, the quality of its output upon closer inspection is poor.
Moreover, their formats is highly variable, and sometimes
the model even fails to acknowledge the risk of money laun-
dering, as further detailed in our macro-level experiments.

3.3 Macro Evaluation Results
To evaluate the utility and reliability of the generated reports, we
conducted a quantitative analysis with four human evaluators.
These evaluators reviewed a mixed set of 500 reports generated
for 100 fraudsters across five models, following a blind evaluation
protocol to ensure objectivity. Inspired by [13], we evaluate reports
using a four-level rating system for precision and recall in risk
analysis: A (75%-100%), B (50%-75%), C (25%-50%), and D (0%-25%).
For example, a report achieves a "B" precision score if the evaluator
judges that 50%-75% of the risk points and their corresponding
analyses are correct. Similarly, a report receives an "A" recall score
if 75%-100% of the risk points mentioned in the query are accu-
rately analyzed within the report. This grading system quantifies
the report’s accuracy in identifying and analyzing risk points.

The experimental results, as depicted in Figure 3, reveal several
key insights:

(1) Our RiskRAG model outperforms all baseline models, no-
tably achieving more A ratings, with the majority of reports

being classified within the A and B categories. This perfor-
mance is attributed to the integration of RiskKB and the
utilization of retrieval-augmented generation techniques,
which collectively enhance the precision and relevance of
the generated reports.

(2) Obviously, models lack of a high-quality knowledge base,
such as the zero-shot approach and those rely on original
reports, exhibit poor performance. These approaches obtain
few A in precision evaluation, indicative of hallucinations
within the content, which falls short of the requirements for
practical financial risk control.

(3) Additionally, the Fewshot model, despite only randomly
drawing five report examples from our RiskKB, still demon-
strates a capacity to guide LLM towards producing stan-
dardized reports. However, its performance marginally lags
behind our similarity retrieval-based approach, underscor-
ing the efficacy of our method in facilitating more accurate
and contextually relevant report generation.

3.4 Case Study
Our deployed model in an online payment service for anti-money
laundering (AML) task is showcased in Figure 4. Initially, a rule
engine is employed to detect money laundering suspects through
vast transaction data, then their suspicious transaction histories
are transformed into queries. Upon clicking the "Analyze" button,
our system retrieves the top five most similar (query, report) pairs
from RiskKB using query similarity, which, along with the query,
will be fed into a local LLM. The LLM then returns a potential
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AML Platform

Client.. within 15 days, the client’s main transaction types were transfers and withdrawals..Transactions Data:

Risk point analysis:
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High frequency of large transfer receipts…
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LLM Analyze

1 Generate Query

2 Click Analyze Button

3 Generate Analysis and Report

Risk report:

Figure 4: The online system of our RiskRAG.

risk analysis. Users can edit the report directly in the text box and
evaluate its quality using the "like" or "dislike" buttons. The scores
and the revised reports are recorded to update our RiskKB. For now,
our system has achieved 72% usage rate, substantially reducing the
time taken to write reports and streamlining the entire process with
transparency and standardization.

4 CONCLUSION
In this work, we introduce RiskRAG a data-centric framework that
seamlessly unites financial risk detection and report generation
into a standard and automated process, leveraging the capabili-
ties of Large Language Models. To ensure the quality of reports,
our RiskRAG enhances LLM’s generative capabilities by retrieving
similar reports from the distilled risk knowledge base, RiskKB, serv-
ing as prompts for the model. Deployed in real-world anti-money
laundering (AML) scenario, RiskRAG has proven its superiority
by significantly reducing report generation times and achieving
notable adoption rates. In future work, we will dedicate to extend-
ing our RiskRAG to broader scenarios, such as complex detection
models and multi-modal data, enriching its analytical depth and
adaptability to diverse financial crime.
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