
Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training

Charles Dickens∗
cadicken@ucsc.edu

University of California Santa Cruz
Santa Cruz, CA, U.S.A

Eddie Huang
ewhuang@amazon.com

Amazon
U.S.A

Aishwarya Reganti
areganti@amazon.com

Amazon
U.S.A

Jiong Zhu∗
jiongzhu@umich.edu
University of Michigan
Ann Arbor, MI, U.S.A

Karthik Subbian
ksubbian@amazon.com

Amazon
U.S.A

Danai Koutra
dkoutra@amazon.com

Amazon
U.S.A

ABSTRACT

Graph summarization as a preprocessing step is an effective and
complementary technique for scalable graph neural network (GNN)
training. In this work, we propose the Coarsening Via Convolution
Matching (ConvMatch) algorithm and a highly scalable variant,
A-ConvMatch, for creating summarized graphs that preserve the
output of graph convolution. We evaluate ConvMatch on six real-
world link prediction and node classification graph datasets, and
show it is efficient and preserves prediction performance while sig-
nificantly reducing the graph size. Notably, ConvMatch achieves
up to 95% of the prediction performance of GNNs on node classi-
fication while trained on graphs summarized down to 1% the size
of the original graph. Furthermore, on link prediction tasks, Con-
vMatch consistently outperforms all baselines, achieving up to a
2× improvement.

CCS CONCEPTS

• Computing methodologies → Machine learning; Neural
networks; Machine learning algorithms.

KEYWORDS

Graph Neural Networks, Graph Summarization, Graph Convolu-
tions

ACM Reference Format:

Charles Dickens, Eddie Huang, Aishwarya Reganti, Jiong Zhu, Karthik Sub-
bian, and Danai Koutra. 2024. Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training. In Proceedings of Workshop
Proposal DCAI Data-centric Artificial Intelligence (WWW-DCAI ’24). ACM,
New York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Work done while the authors were on an internship at Amazon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW-DCAI ’24, May 13–17, 2024, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Graph neural networks (GNNs) have achieved state-of-the-art per-
formance on various tasks ranging from recommendation to pre-
dicting drug interactions [13]. However, a drawback of a GNN’s
modeling capacity is a computationally expensive inference process
with a complexity that scales with the size of the graph. Modern
techniques for scaling the training of deep models, such as lever-
aging the parallel structure of GPUs for processing large blocks of
data, have been successfully adopted by the GNN community [9, 36].
However, graph datasets encountered in real-world applications are
on the order of tens of billions of edges [44] and quickly exceed the
costly and limited memory capacity of today’s GPUs. Techniques
for partitioning and distributing the training graph across compu-
tational resources and integrating graph sampling into the training
pipeline have been proposed [16, 30, 43, 45]. Nonetheless, training
GNNs is still a highly expensive process, which limits applicabil-
ity and prohibits large-scale architecture searches. Furthermore,
distributed training and sampling techniques introduce their own
difficulties. For example, distributed training faces communication
overhead across machines [10], while sampling techniques bring
additional hyperparameters that affect model performance [30, 45].

A promising new direction of scalable GNN training is to per-
form summarization, i.e., create a smaller graph with fewer nodes
and edges, as a preprocessing step. These methods either sample
nodes and edges from the original training graph [11, 26, 32, 34, 38],
coarsen by clustering nodes into supernodes [15], or create syn-
thetic connections and node features [17, 42]. To be applicable for
scalable GNN training, the summarization process should be faster
than fitting a GNN on the original graph. Additionally, the summa-
rized graph should share properties with the original graph such
that a GNN can be fit for various downstream tasks with good per-
formance. Existing approaches to summarization typically do not
satisfy at least one of the mentioned desirable properties (Table 1).

In this work, we introduce Coarsening Via Convolution Match-
ing (ConvMatch), a scalable coarsening algorithm. ConvMatch
merges nodes that minimize a cost quantifying the change in the
output of graph convolution. Notably, ConvMatch merges nodes
that are structurally similar, allowing the algorithm to identify and
summarize redundant nodes that are distant, or even disconnected,
in the original graph. Our primary contributions are:

• New Approach: We introduce ConvMatch, a coarsening
algorithm that preserves the output of graph convolutions.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WWW-DCAI ’24, May 13–17, 2024, Singapore C. Dickens et al.

• Highly-scalable Variant: We propose a principled approx-
imation to computing costs in the ConvMatch algorithm,
A-ConvMatch, which allows it to scale to large graphs.
• Extensive Empirical Analysis: We perform an extensive
empirical analysis demonstrating our method’s ability to
summarize large-scale graphs and preserve prediction per-
formance. On link prediction tasks, ConvMatch achieves
up to a 2× prediction performance improvement over the
best baseline. In node classification, it achieves up to 95% of
the prediction performance of a GNN on a graph that is 1%
the size of the original.

2 RELATEDWORK

We give a qualitative comparison of methods for graph summariza-
tion for scalable GNN training in Table 1.
Coreset Selection. Coreset methods aim to find a subset of training
examples such that a model trained on the subset will perform sim-
ilarly to a model trained on the complete dataset [11, 26, 32, 34, 38].
Herding, proposed by Welling (2009) [38] is a coreset technique in
which training examples are first mapped to an embedding space
and then clustered by class. Examples closest to the cluster center
in the embedding space are selected. The KCenter algorithm [32]
similarly embeds training data and then incrementally selects ex-
amples with the largest minimum distance to the growing cluster
subset.
Graph Condensation. Distillation and condensation techniques
search for a small synthetic dataset such that model parameters fit
on the synthetic dataset are approximate minimizers of the training
objective on the original dataset [2, 17, 18, 28, 33, 37, 41, 42]. Re-
cently, Jin et al. (2022b) [18] extended the dataset condensation via
gradient matching scheme proposed by Zhao et al. (2021) [42] with
the GCond algorithm, which synthesizes graph data for training
GNNs, and later with DosCond, which performs one-step gradi-
ent matching to find the synthesized graph [17]. Alternatively, Liu
et al. (2022) [23] propose a condensation method for creating a
synthetic graph that aims to match statistics of the receptive field
of the original graph nodes.
Graph Coarsening. Coarsening is a graph summarization [24]
technique in which nodes and/or edges from an original graph are
merged to form a supergraph. Graph coarseningmethods are widely
applied and studied for problems ranging from influence analysis
[29], visualization [6, 12, 35], combinatorial optimization [7, 27],
and, recently, scaling graph embeddings [1, 5, 8, 15, 20, 22, 40]. More-
over, coarsening methods typically have the practically advanta-
geous property of producing multi-level summaries, i.e., producing
summaries at multiple level of granularity. Huang et al. (2021) [15]
specifically proposed coarsening to overcome scalability issues of
GNN training. The authors coarsen the graph used for training the
GNN, with algorithms by Loukas (2019) [25].

ConvMatch is a graph coarsening algorithm that aims to pre-
serve the graph convolution operations that are fundamental to
spectral-based GNNs. ConvMatch advances existing coarsening
approaches for scalable GNN training by merging structurally sim-
ilar nodes instead of neighbors.

3 BACKGROUND AND PRELIMINARIES

We start with key notations and the necessary background for
describing our proposed approach.

Graph Notations. Let 𝐺 = (V, E) denote a graph with a node
attribute matrix X ∈ R𝑛×𝑑 , where 𝑛 = |V| and 𝑑 > 0. Let A ∈
{0, 1}𝑛×𝑛 be the adjacency matrix corresponding to the graph 𝐺 ,
and D be the diagonal degree matrix.

Graph Coarsening. A coarse graph is defined from a partition-
ing of the nodes into 𝑛′ ≤ 𝑛 clusters: P = {C1, C2, · · · , C𝑛′ }. Each
partition, C𝑖 ∈ P, is referred to as a supernode. The partitioning is
represented by a partition matrix

P ∈
P′ ∈ {0, 1}𝑛×𝑛

′
��� ∑︁

𝑗

P′𝑖, 𝑗 = 1, ∀𝑖
 ≜ P(𝑛, 𝑛′) (1)

, where entry P𝑖, 𝑗 = 1 if and only if 𝑣𝑖 ∈ C𝑗 . Given the partition
matrix, the coarse graph 𝐺 ′ = (V′, E′) is constructed with an
adjacency matrix A′ ≜ P𝑇AP and degree matrix D′ ≜ P𝑇DP.
We define the supernode size matrix of the coarse graph as C ≜
diag([|C1 |, |C2 |, · · · , |C𝑛′ |]). Then, the coarse node attribute matrix
is given as X′ ≜ C−1P𝑇X.

Spectral GraphConvolutions. Spectral-based GNNs are a promi-
nent class ofmodels rooted in graph Fourier analysis [3, 4, 19, 21, 39].
These methods generally assume graphs to be undirected and rely
on the graph Laplacian: ∆ ≜ D − A, and its eigendecomposition:
∆ = UΛU𝑇 , where U ∈ R𝑛×𝑛 is an orthonormal matrix comprising
the eigenvectors of ∆, and Λ = diag(𝜆1, · · · , 𝜆𝑛) is the diagonal ma-
trix of eigenvalues. The graph Fourier transform of a signal x ∈ R𝑛
over the graph𝐺 is defined asF𝐺 (x) ≜ U𝑇 x. AsU is an orthonormal
matrix, the inverse graph Fourier transform is thus F −1

𝐺
(x) ≜ Ux.

The graph convolution of a signal x ∈ R𝑛 and a signal, or filter,
g ∈ R𝑛 , is the inverse transform of the element-wise product (⊙) of
the signals in the transformed domain:

g★𝐺 x ≜ F −1𝐺 (F𝐺 (x) ⊙ F𝐺 (g)) = U(U𝑇 x ⊙ U𝑇 g). (2)

Spectral-based GNNs use this definition to motivate architectures
that approximate graph convolutions and parameterize the filter.
In this work, we use the principled approximation of graph con-
volution proposed by Kipf and Welling (2017)[19]. Specifically, let
x ∈ R𝑛 and g𝜃 be a signal and filter parameterized by a scalar 𝜃 ,
respectively. The graph convolution of x and g𝜃 is approximately:

g𝜃 ★𝐺 x ≈ 𝜃 (D̃−
1
2 ÃD̃−

1
2)x, (3)

where Ã = A+I (graphwith self-loops) and D̃ is the degree matrix of
Ã. Graph convolutions are generalized to multi-dimensional signals
to define graph convolutional networks (GCN). Specifically, let X
be an (𝑛× 𝑓) matrix, then a𝐾-layer GCN parameterized by a matrix
Θ(𝐾) is a recursive application of the convolution approximation
and an activation function, 𝜎 (·):

H(𝐾) ≜

{
X 𝐾 = 0
𝜎 ((D̃−

1
2 ÃD̃−

1
2)H(𝐾−1)Θ(𝐾)) o.w.

(4)

Further, defining H̃(𝐾) ≜ (D̃−
1
2 ÃD̃−

1
2)H(𝑘−1) and H(0) ≜ X,

we have the equivalent compact form: H(𝐾) ≜ 𝜎 (H̃(𝐾)Θ(𝐾)). A
notable instantiation of the GCN architecture proposed by Wu
et al. (2019)[39] is the simplified GCN (SGC), which uses the identity

Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training WWW-DCAI ’24, May 13–17, 2024, Singapore

Table 1: Qualitative comparison of graph summarizationmethods. ‘Summary’: the type of summarized graph produced; ‘NC/LP’:

summarized graph can be used to train a model for node classification or link prediction, resp.; ‘No GNN on full graph’: does not

require fitting a GNN on the full graph; ‘Multi-level’: multiple levels of summarization produced; ‘Merge Strategy’: if applicable,

the strategy for selecting nodes to merge.

Core Technique Summary Method NC LP

No GNN on

Full Graph Multi-Level Merge Strategy

Coreset
Sampled
graph

RS ✓ ✓ ✓ ✓
-KCenter [32] ✓ × × ✓

Herding [38] ✓ × × ✓

Condensation
Synthetic
graph

GCond [18] ✓ ✓ × × -DosCond [17] ✓ ✓ × ×

Coarsening Supergraph
VN [25] ✓ ✓ ✓ ✓ Neighbors
ConvMatch (ours) ✓ ✓ ✓ ✓ Structurally similar
A-ConvMatch (ours) ✓ ✓ ✓ ✓ Structurally similar

operator as the activation. 𝐾 recursive applications of SGC layers is
equivalent to a single linear operator acting on (D̃−

1
2 ÃD̃−

1
2)𝐾X:

H(𝐾)
𝑆𝐺𝐶

≜ (D̃−
1
2 ÃD̃−

1
2)𝐾XΘ. (5)

This expression illustrates the primary benefits of the SGC architec-
ture; the result of (D̃−

1
2 ÃD̃−

1
2)𝐾X is cached so future inferences

do not require computation of the intermediate representations of
nodes. Moreover, the parameter space reduces to a single matrix Θ.

Coarse Graph Convolutions. Huang et al. (2021)[15] propose
coarse graph convolution layers. Setting Ã′ ≜ A′+C and D̃′ ≜ D′+C,
a coarse graph convolution is recursively defined as

H′(𝐾) ≜

{
X′ 𝐾 = 0
𝜎 ((D̃′−

1
2 Ã′D̃′−

1
2)H′(𝐾−1)Θ(𝐾)) o.w.

(6)

Similar to GCN convolutions, defining H′(0) ≜ X′ and H̃′(𝐾) ≜
(D̃′−

1
2 Ã′D̃′−

1
2)H′(𝐾−1) we have the compact expression: H′(𝐾) ≜

𝜎 (H̃′(𝐾)Θ(𝐾)). Note that the dimensions of the parameter matrix,
Θ(𝐾) , of a coarse graph convolution layer is not dependent on
the partition P, but rather on the dimensions of the original node
attribute matrix X and can thus be applied to Eq. (3). In other words,
the parameters Θ(𝐾) learned on a coarse graph can also be used
for inference on the original graph.

4 CONVMATCH: COARSENING VIA

CONVOLUTION MATCHING

A coarsening algorithm designed for scalable GNN training should:
(1) produce a small coarsened graph, and (2) a GNN fit on the coars-
ened graph should have a similar prediction performance to a GNN
fit on the original graph. We hypothesize, and empirically verify
in Section 5, that preserving the output of graph convolutions by
minimizing the difference in the intermediate node representations
computed for a GCN layer and a coarse graph convolution layer
produces good coarsenings for scalable training of spectral-based
GNNs. In this section, we formalize the notion of preserving the
output of graph convolutions with a combinatorial optimization
problem. We then introduce two coarsening methods: Coarsening
Via Convolution Matching (ConvMatch) and a highly scalable

variant, A-ConvMatch, both approximately solving the proposed
optimization problem.

4.1 Convolution Matching Objective

Preserving the output of GCN graph convolution for a given graph
signal x and parameterized filter g𝜃 is formalized by the following
problem:

argmin
P∈P(𝑛,𝑛′)

∥𝜃P(D̃′−
1
2 Ã′D̃′−

1
2)x′ − 𝜃 (D̃−

1
2 ÃD̃−

1
2)x∥11 . (7)

We aim to find a partition matrix that minimizes the sum of the 𝐿1
distances between the node representations obtained via the output
of a single graph convolution on the original and coarsened graph.
The parameter 𝜃 acts as a positive scalar multiple in our objective,
thus, minimizing the difference to the unscaled GCN convolution
is equivalent.

We generalize the objective in Eq. (7) to multi-dimensional graph
signals by formulating a multi-objective problem. Specifically, we
equally weigh the difference in the GCN convolution operation for
each component of the graph signal to define a linear scalarization
of the multi-objective problem:

argmin
P∈P(𝑛,𝑛′)

𝑓∑︁
𝑖=1
∥P(D̃′−

1
2 Ã′D̃′−

1
2)x′𝑖 − (D̃

− 1
2 ÃD̃−

1
2)x𝑖 ∥11, (8)

where x𝑖 and x′
𝑖
are the 𝑖′𝑡ℎ components of the 𝑓 -dimensional graph

signals X and X′. The resulting objective ensures that when fitting
GNN parameters using the coarsened graph, the parameters are
trained to operate on a matrix that is close to the original. It is
important to note that the coarsening problem formulated in Eq.
(8) does not restrict the partitioning to preserve connections in the
original graph, i.e., two nodes that are distant or even existing in
disconnected components of the original graph may be merged into
a single supernode.

4.2 ConvMatch

A brute-force approach solving Eq. (8) by computing the cost of
all partitionings of the nodes is an intractable procedure as the
number of partitionings grows combinatorially with the number

WWW-DCAI ’24, May 13–17, 2024, Singapore C. Dickens et al.

of nodes. Therefore, we take a bottom-up hierarchical agglomera-
tive clustering approach with ConvMatch to find an approximate
solution. ConvMatch is outlined in Algorithm 1 (and Algs. 2-3
in the Appendix) and an illustration is provided in Figure 2 in the
Appendix.

Algorithm 1: ConvMatch
input :Graph 𝐺 = (V, E,X), Ratio 𝑟 , Merges per level k
output :Coarsened graph 𝐺 ′ = (V′, E′,X′)

1 𝐺 ′ = (V′, E′,X′) ← 𝐺 = (V, E,X);
2 P← I; H̃′ ← (D̃−

1
2 ÃD̃−

1
2)X;

3 candidates← CandidateSupernodes(𝐺 ′);
4 supernode_costs← ComputeCosts(𝐺 ′, H̃′, candidates);
5 while |V′ | > 𝑟 · |V| do
6 𝐺 ′, P, H̃′, supernodes←

Merge(𝐺 ′, TopKNonOverlap(supernode_costs, k));
7 supernode_costs←

ComputeCosts(𝐺 ′, H̃′, Neighborhood(supernodes));

In short, ConvMatch proceeds by first, in Step 1, computing
the intermediate node representation obtained via a coarse graph
convolution (Eq. (3)) and creating an initial set of candidate node
pairs, or supernodes. Then, Step 2 computes a cost for each pair
measuring the change in the objective value of Eq. (8) caused by
creating the supernode, i.e., the change in the GCN convolution out-
put. Finally, Step 3 of ConvMatch finds a number of lowest-cost
node pairs, merges them, and finds new node pair candidates and
costs. This process is repeated until the desired coarsening ratio is
reached. As a hierarchical approach, ConvMatch produces multiple
levels of coarsening, i.e., we refer to a the graph after ℓ passes of the
ConvMatch algorithms a level-ℓ coarsened graph. In the following
subsections, we describe the processes for generating candidate
supernodes, computing supernode costs, and finally merging nodes.

4.2.1 Step 1: Candidate Supernodes. Considering all ∼ 𝑛2 node
pairs as candidate supernodes is infeasible for large-scale graphs
withmillions of nodes and edges. Therefore, we only look at a subset
of all possible pairs that capture attribute and structural similarities
between nodes. Specifically, to generate the initial set of candidate
supernodes ConvMatch pairs nearest neighbors in the embedding
space of a trivially parameterized (Θ = I) 𝐾-layer SGC network
(Eq. (5)). This embedding is the output of 𝐾 recursive applications
of a GCN convolution Eq. (3), the very operation we are aiming
to preserve. The supernode candidate set defines the merge-graph:
𝐺𝑚𝑒𝑟𝑔𝑒 = (V′, E𝑚𝑒𝑟𝑔𝑒), where, initially,V′ = V and E𝑚𝑒𝑟𝑔𝑒 is the
set of edges connecting the generated node pairs. The embedding
step has a computational time complexity of 𝑂 (𝐾 · 𝑑𝑎𝑣𝑔 · |V|),
where 𝐾 is the depth of the SGC network being used and 𝑑𝑎𝑣𝑔 is
the average degree of nodes in the graph. Note that computing the
embedding is embarrassingly parallelizable. See Appendix B.1 for a
more detailed description and algorithm.

4.2.2 Step 2: Supernode Cost Computation. Each edge connecting
two supernodes, 𝑢, 𝑣 ∈ V′, in the merge-graph is associated with a
cost quantifying the objective value in Eq. (8) for a partitioning that
merges the incident supernodes. Let P(𝑢,𝑣) be the partition matrix

merging supernodes 𝑢 and 𝑣 . Moreover, let H̃(1)(𝑙) and H̃(1)(𝑙,P(𝑢,𝑣)) rep-
resent the coarse graph convolution node representations obtained
before and after applying the partitioning P at level 𝑙 , respectively.
Then, the cost of merging two supernodes is:

𝑐𝑜𝑠𝑡 (𝑢, 𝑣) ≜ ∥P(𝑢,𝑣) H̃
(1)
(𝑙,P(𝑢,𝑣))

− H̃(1)(𝑙) ∥
1
1 . (9)

A scalable algorithm and an illustration of an instance of the su-
pernode cost computation is provided in Appendix B.2. Computing
the cost of merging two nodes, 𝑢 and 𝑣 , exactly as it is defined
in Eq. (9) has a time complexity of 𝑂 (𝑑𝑢 + 𝑑𝑣), where 𝑑𝑢 and 𝑑𝑣
are the degrees of 𝑢 and 𝑣 , respectively. This is because merging
nodes 𝑢 and 𝑣 affects the representation of each neighbor of 𝑢 and
𝑣 . Caching techniques for scaling the evaluation of Eq. (9) are in
Appendix B.4.

A-ConvMatch. Motivated by the following result, we propose
A-ConvMatch, an approximation of the supernode cost computa-
tion that yields significant improvements in graph summarization
time.

Theorem 1. The following is a tight upper bound on Eq. (9)

𝑐𝑜𝑠𝑡 (𝑢, 𝑣) ≤∥H̃(1)(𝑙) [𝑢] − P(𝑢,𝑣) H̃
(1)
(𝑙,P(𝑢,𝑣))

[(𝑢, 𝑣)] ∥11 (10)

+ ∥H̃(1)(𝑙) [𝑣] − P(𝑢,𝑣) H̃
(1)
(𝑙,P(𝑢,𝑣))

[(𝑢, 𝑣)] ∥11

+ ∥x̃(𝑢,𝑣) − x̃𝑢 ∥11
∑︁

𝑖∈N({𝑢})

𝑎𝑢𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |)

+ ∥x̃(𝑢,𝑣) − x̃𝑣 ∥11
∑︁

𝑖∈N({𝑣})

𝑎𝑣𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |)

,

where x̃𝑖 ≜
x𝑖√

(𝑑𝑖+|𝐶𝑖 |)
are the normalized features for supernode 𝑖 .

The bound is satisfied with equality if N(𝑢) ∩ N (𝑣) = ∅.

The proof of Theorem 1 is provided in Appendix B.5. We use this
bound as an approximation of the cost of merging two nodes in
A-ConvMatch. This approximation allows the cost of merging two
nodes to be a function of properties local to the two nodes being
considered, making the cost computation fast and highly scalable.
More formally, the time complexity of computing the approximate
cost of merging two nodes, 𝑢 and 𝑣 , is a constant, 𝑂 (1), operation.

4.2.3 Step 3: Node Merging. At every level of coarsening, Con-
vMatch simultaneously merges the top-𝑘 non-overlapping lowest-
cost candidate supernodes. For the coarsened graph and merge-
graph, when supernodes𝑢 and 𝑣 are merged to create a new supern-
ode, the new supernode is connected to every neighbor of 𝑢 and
𝑣 . Furthermore, the edges connecting supernodes in the resulting
coarsened graph are weighted by the number of edges connecting
nodes in the two incident supernodes. Moreover, the features of
the supernodes are a weighted average of the features of the nodes
being merged, and in node classification settings, the node label
used for training is the majority label of nodes in a supernode.
More formally, in this step the partition matrix P and the coars-
ened graph G′ = (V′, E′) are updated to account for the merge.
In addition, the cost of a subset of node pairs connected by an
edge in the merge-graph must be updated after a merge. More for-
mally, the time complexity of merging two nodes 𝑢 and 𝑣 is roughly
𝑂 (𝑑𝑚𝑒𝑟𝑔𝑒𝑎𝑣𝑔 · (𝑑𝑢 +𝑑𝑣)), where 𝑑𝑚𝑒𝑟𝑔𝑒𝑎𝑣𝑔 is the average degree of nodes

Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training WWW-DCAI ’24, May 13–17, 2024, Singapore

in the merge-graph. This process is also highly parallelizable. De-
tails on the exact updates to the coarse graph and a highly scalable
merging procedure are provided in Appendix B.3. Additionally, we
propose a scalable cost computation and update in Appendix B.5.
An empirical study on the effect of the number of nodes simultane-
ously merged at this step on the coarsening time and performance
is provided in the following section.

5 EXPERIMENTS

We perform experiments to answer the following research ques-
tions:

• RQ1: At varying coarsening ratios, how do our ConvMatch
variants compare to the baselines in terms of summariza-
tion time, as well as GNN training runtime and memory
requirements?
• RQ2: How effective are the GCNs trained on graphs summa-
rized by our ConvMatch variants (vs. baselines) in down-
stream node classification and link prediction tasks?
• RQ3: What is the effect of the number of merges 𝑘 at each
level of coarsening in ConvMatch on the summarization
time and downstream task performance?

All reported results are fully reproducible, with code and data avail-
able upon final submission.
Datasets. In our experiments, we use six datasets summarized in
Table 2. Citeseer and Cora are citation networks which we use for
both node classification (NC) and link prediction (LP) tasks [31].
Additionally, we use four datasets from the Open Graph Bench-
mark (OGB) [14]. OGBNArxiv (Arxiv) and OGBLCitation2 (Cit2)
are also citation networks and are curated for testing NC and LP
performance, respectively. OGBLCollab (Coll) is a collaboration
network with the LP task of ranking true collaborations higher
than false collaborations. Finally, OGBNProducts (Prod) is a prod-
uct co-purchasing network with the NC task of predicting product
categories. Prediction performance for NC tasks is measured using
accuracy. The prediction performance for LP tasks is measured
using AUC on Citeseer and Cora, Hits@50 on Coll, and MRR on
Cit2.

Table 2: Table of dataset statistics and task (NC: node classifi-

cation; LP: link prediction).

Dataset Task Nodes Edges Features

Citeseer NC / LP 3, 327 4, 732 3, 703
Cora NC / LP 2, 708 5, 429 1, 433
OGBNArxiv NC 169, 343 1, 166, 243 128
OGBLCollab LP 235, 868 1, 285, 465 128
OGBLCitation2 LP 2, 927, 963 30, 561, 187 128
OGBNProducts NC 2, 449, 029 61, 859, 140 100

Baselines. We additionally evaluate the performance of six base-
lines: (a) three coreset methods: Random Node Sampling (RS), Herd-
ing [38], and KCenter [32]; (b) two graph condensation methods:
graph condensdation (GCond) [18] and one-step gradient matching

(DosCond) [17]; and (c) one coarsening method: Variation Neigh-
borhoods (VN) [15, 25]. For implementation and hyperparameter
details see Appendix C.

GCN Architectures and Hyperparameters. All experiments
are performed using a GCN model. We give the details of the GCN
architectures and hyperparameters for summarization baselines and
ConvMatch and A-ConvMatch in Appendix C. The merge batch
sizes of our algorithm are fixed for each dataset for experiments in
Section 5.1 and Section 5.2 and an ablation study along with final
hyperparameter settings are provided in Appendix C.

5.1 (RQ1) Runtime and Memory Efficiency

First, we evaluate the efficiency of our proposed ConvMatch vari-
ants and the baseline graph summarization algorithms, as well as
the training time and memory efficiency of the GNNs trained on
the resultant graph summaries.

Graph Summarization Time. We compare the graph sum-
marization time of ConvMatch and A-ConvMatch to baselines
at varying coarsening ratios for each dataset and task. The av-
erage time across 5 rounds of summarization for all datasets are
shown in Figure 1. First, we observe for Cora A-ConvMatch is
over 5× faster than ConvMatch. For this reason we chose to only
run A-ConvMatch on the larger OGB datasets. A-ConvMatch
is consistently faster than all other baseline graph summarization
methods on the larger OGB datasets. The VN baseline is faster than
A-ConvMatch in Cora, however we empirically demonstrate this
method struggles to scale to larger graphs (e.g., it timed out after 24
hours on the OGBNProducts dataset). A-ConvMatch is faster than
the condensation and coreset baselines as it does not compute gra-
dients of a GNN model with the full graph during summarization.
Finally, we note that the coarsening methods have the additional
advantage of being bottom-up multi-level approaches, and thus the
time required to reach the coarsening ratio 𝑟 = 0.1% includes the
time required to reach the ratio 𝑟 = 1% and 𝑟 = 10% and so on. On
the other hand, creating the synthetic graphs with the condensation
methods for two different ratios is two separate procedures and the
work to reach one ratio is not obviously usable to reach another.
This property could be leveraged in GNN learning curriculums or
hyperparameter exploration.

GNN Training Runtime and Memory Efficiency. We exam-
ine the amount of GPU memory used and the time required to
complete a fixed number of training epochs for each dataset at
varying coarsening ratios. Table 3 shows the average total time and
maximum amount of GPU memory used across 5 rounds of training
on a graph coarsened using A-ConvMatch. Table 3 shows there
is a significant decrease in the amount of GPU memory and time
required to complete training on a coarsened graph. The results are
most notable on the largest datasets: OGBLCitation2 and OGBN-
Products, where the amount of memory required to compute the
batch gradient for the GCN exceeded the 120𝐺𝐵 of GPU memory
available on our machine.

WWW-DCAI ’24, May 13–17, 2024, Singapore C. Dickens et al.

Figure 1: Plots of graph summarization times at multiple coarsening ratios for all datasets and tasks. ConvMatch and A-

ConvMatch are fast summarization algorithms when compared to baselines.

Table 3: Average time, rounded to the nearest minute, and GPU memory, rounded to the nearest GB, required to complete all

training epochs at varying coarsening ratios.

(a) Link Prediction

Dataset Ratio Time (min) Memory (GB)

Citeseer
1 3 2
10 3 3
100 10 12

Cora
1 4 1
10 4 1
100 12 7

Coll

0.1 6 9
1 15 9
10 40 12
100 210 70

Cit2
0.1 60 22
1 660 40

100 > 1440 > 120

(b) Node Classification

Dataset Ratio Time (min) Memory (GB)

Citeseer
1 4 1
10 5 1
100 5 1

Cora
1 2 1
10 4 1
100 4 1

Arxiv

0.1 5 7
1 10 7
10 20 8
100 170 20

Prod
0.1 60 38
1 150 45

100 > 1440 > 120

5.2 (RQ2) Downstream Task Prediction

Performance

We now compare the prediction performance of GCNs trained on
graphs summarized using ConvMatch, A-ConvMatch, and base-
line summarization methods at varying coarsening ratios. Link
prediction and node classification performance of the trained GCNs
are reported in Table 4a and Table 4b, respectively. ConvMatch or
A-ConvMatch is consistently among the top three performing sum-
marization methods for both tasks. Furthermore, A-ConvMatch
achieves the best overall performance, as indicated by the lowest
average rank.

Table 4a shows ConvMatch and A-ConvMatch are signifi-
cantly better at creating summarized graphs for training a GCN
for link prediction compared to alternative summarization meth-
ods. Notably, GCN’s trained on ConvMatch and A-ConvMatch
summarized graphs achieve up to 90% of the link prediction per-
formance at a coarsening ratio of 𝑟 = 1% in Citeseer and Cora,
respectively. Moreover, A-ConvMatch achieves a nearly 2 × im-
provement over the best performing baseline in Cit2 at 𝑟 = 0.1% and
over a 20% point improvement at 𝑟 = 1%. A possible explanation for
this is that ConvMatch and A-ConvMatch merge nodes that are

Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training WWW-DCAI ’24, May 13–17, 2024, Singapore

Table 4: Link prediction and node classification performance at varying coarsening levels. The top three performing scores are

highlighted as: First , Second , Third . Average ranks are reported for methods that were ran on all datasets and coarsening

ratios. Our A-ConvMatch approach performs the best across datasets and coarsening ratios, as indicated by the lowest average

rank in both link prediction and node classification tasks (1.4 and 2.5, resp.).

(a) Link Prediction

Sumarizer

Ratio RS GCond DosCond VN ConvMatch (ours) A-ConvMatch (ours)

Ci
te
se
er 1% 67.41 ± 1.26 65.01 ± 1.09 63.54 ± 6.36 80.26 ± 4.51 87.72 ± 1.38 87.68 ± 1.24

10% 69.11 ± 2.09 72.65 ± 6.78 53.06 ± 12.28 88.55 ± 0.77 90.43 ± 0.49 88.41 ± 0.97
100% 91.57 ± 0.55

Co
ra 1% 70.91 ± 3.67 67.08 ± 0.64 71.60 ± 0.35 75.19 ± 3.01 66.33 ± 2.35 78.63 ± 1.55

10% 72.84 ± 2.15 66.19 ± 0.39 60.21 ± 0.52 81.81 ± 2.06 83.51 ± 1.01 83.30 ± 1.45
100% 85.04 ± 0.68

Co
ll

.1% 7.22 ± 0.97 7.61 ± 0.41 1.15 ± 0.88 6.60 ± 1.47 - 9.14 ± 2.07
1% 11.41 ± 0.35 OOM OOM 5.45 ± 1.95 - 26.25 ± 1.84
10% 15.80 ± 3.11 OOM OOM 24.33 ± 1.61 - 35.94 ± 1.86
100% 44.08 ± 0.94

Ci
t2

.1% 9.86 ± 0.01 OOM OOM 10.43 ± 2.71 - 30.42 ± 0.63
1% 9.87 ± 0.01 OOM OOM 38.95 ± 4.83 - 60.34 ± 1.15

100% 84.74 ± 0.00

Avg. Rank 3.4 − − 2.6 − 1.4

(b) Node Classification

Sumarizer

Ratio RS KCenter Herding GCond DosCond VN

ConvMatch A-ConvMatch

(ours) (ours)

Ci
te
se
er 1% 19.22 ± 6.85 59.02 ± 2.25 62.80 ± 1.33 68.22 ± 2.08 71.36 ± 1.27 35.92 ± 3.76 65.40 ± 4.12 67.68 ± 2.87

10% 28.00 ± 9.15 54.70 ± 3.62 53.5 ± 1.68 70.10 ± 3.43 68.76 ± 0.97 53.88 ± 7.36 69.84 ± 1.58 68.46 ± 1.61
100% 71.40 ± 0.35

Co
ra 1% 18.76 ± 9.67 59.92 ± 1.67 63.74 ± 2.24 77.44 ± 1.90 78.40 ± 0.83 31.96 ± 11.02 72.60 ± 3.11 72.30 ± 2.90

10% 27.52 ± 9.89 56.12 ± 7.46 64.10 ± 2.12 80.02 ± 0.92 78.64 ± 1.87 59.22 ± 4.90 79.82 ± 0.60 80.12 ± 1.09
100% 81.02 ± 0.19

A
rx
iv

0.1% 42.45 ± 3.62 49.79 ± 2.87 58.79 ± 0.90 48.10 ± 3.27 21.69 ± 4.30 28.90 ± 5.79 - 54.82 ± 2.67
1% 59.97 ± 1.58 61.99 ± 1.24 61.42 ± 1.34 OOM OOM 53.61 ± 2.76 - 64.08 ± 0.39
10% 67.50 ± 0.63 68.25 ± 0.25 67.75 ± 0.58 OOM OOM 67.12 ± 1.26 - 67.51 ± 0.47
100% 72.14 ± 0.18

Pr
od

0.1% 48.20 ± 1.57 60.88 ± 1.31 66.14 ± 0.71 OOM OOM TIMEOUT - 62.36 ± 0.84
1% 66.57 ± 1.47 69.66 ± 0.31 71.79 ± 0.45 OOM OOM TIMEOUT - 68.20 ± 0.36

100% 75.64 ± 0.00∗

Avg. Rank 5.9 3.8 3.2 - - - - 2.5

equivalent or similar with respect to the GCN convolution opera-
tion, which captures both nodes attributes and structural properties.
For this reason the summarized graph contains supernodes that can
be used to create good positive and negative link training examples.

Table 4b shows Herding and KCenter methods perform well
for the node classification task on the larger OGB datasets. These
methods do however have a trade off as they initially fit a GNN
using the complete graph to obtain node embeddings resulting in
a slower summarization time, as shown in the previous section.
Condensation methods perform extremely well on Citeseer and

Cora, however they have difficulty creating larger summarized
graphs hitting out of memory errors on the OGB datasets because
they compute a full gradient using the original graph. Furthermore,
the results we find for GCond on OGBNArxiv differ from those
reported in Jin et al. (2022a) [17] as the GCN architecture in the
summarizer and the GCN being trained are not exactly matched.
The authors mention this behavior in their appendix section C.5.
Finally, we observe A-ConvMatch is the most reliable summarizer
for node classification with the best average rank of 2.3. The next
best method in terms of average rank is Herding at 3.3.

WWW-DCAI ’24, May 13–17, 2024, Singapore C. Dickens et al.

Table 5: ConvMatch graph summarization time in seconds and prediction performance at varying merge batch sizes and a

coarsening ratio 𝑟 = 1.0%.

(a) Link Prediction

Dataset Batch Size Time (sec)

Perf.

Valid. Test

Citeseer
1 178.03 85.42 87.68
10 37.95 86.78 86.44
100 8.46 88.19 88.25

Cora
1 105.46 74.21 74.93
10 25.73 76.20 78.44
100 4.72 69.98 67.53

Coll
100 777.77 22.59 26.23

1, 000 259.11 22.78 24.63
10, 000 205.53 23.70 26.25

Cit2 10, 000 6, 555 60.05 60.05
100, 000 4, 740 55.21 55.24

(b) Node Classification

Dataset Batch Size Time (sec)

Perf.

Valid. Test.

Citeseer
1 198.84 66.92 66.08
10 36.78 72.40 68.90
100 8.03 65.20 62.30

Cora
1 101.74 74.40 74.70
10 27.16 70.20 72.30
100 4.89 71.40 71.20

Arxiv
100 624.91 63.94 63.46

1, 000 194.73 62.25 61.07
10, 000 149.91 64.05 64.12

Prod
10, 000 11, 285 85.95 68.57
100, 000 6, 729 86.18 68.20

5.3 Ablation for ConvMatch Merge Batch Size

First, we analyze the effect the number of node pairs simultane-
ously merged at each level of coarsening in ConvMatch has on
the summarization time and prediction performance of the pro-
posed approach. We summarize the training graph for each of the 6
datasets to the coarsening ratio 𝑟 = 1.0% and train a GCN using the
summarized graph. The summarization time in seconds and predic-
tion performance are reported in Table 5 for both link prediction
and node classification. We find increasing the merge batch size has
a limited effect on the prediction performance across all datasets
and for both NC and LP tasks. However, the summarization time
improves considerably.

6 CONCLUSION AND FUTUREWORK

We introduced the ConvMatch graph summarization algorithm
and a principled approximation, A-ConvMatch, which preserve
the output of graph convolution. Our methods were empirically
proven to produce summarized graphs that can be used to fit GCN
model parameters with significantly lower memory consumption,
faster training times, and good prediction performance on both
node classification and link prediction tasks, a first for summariza-
tion for scalable GNN training. Notably, our model is consistently
a top-performing summarization method and achieves up to 20%
point improvements on link prediction tasks. There are exciting
next steps to this research, including extending the idea of con-
volution matching to heterogeneous graphs and developing GNN
training algorithms that leverage multiple levels of a graph coars-
ening. Moreover, although in this work we focus on motivating
our approach and providing a comprehensive evaluation for GCN’s,
no change to our coarsening algorithm is necessary to apply it to
different GNN architectures. Future research on applying the same
algorithmic framework of ConvMatch but specialized to preserving
the operations applied in another GNN model is promising.

REFERENCES

[1] Esra Akbas andMehmet EminAktas. 2019. Network Embedding: OnCompression
and Learning. In IEEE Transactions on Big Data.

[2] Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. 2020. Flexible Dataset
Distillation: Learn Labels Instead of Images. In Arxiv preprint.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. 2014. Spectral
networks and Locally Connected Networks on Graphs. In International Conference
on Learning Representations (ICLR).

[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems (NIPS).

[5] Chenhui Deng, Zhiqiang Zhao, YongyuWang, Zhiru Zhang, and Zhuo Feng. 2020.
GraphZoom: A Multi-Level Spectral Approach for Accurate and Scalable Graph
Embedding. In International Conference on Learning Representations (ICLR).

[6] Cody Dunne and Ben Schneiderman. 2013. Motif Simplification: Improving
Network Visualization Readability with Fan, Connector, and Clique Glyphs. In
ACM SIGCHI Conference on Human Factors in Computing Systems (CHI).

[7] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Racke, Inbal
Talgam-Cohen, and Kunal Talwar. 2014. Vertex Sparsifiers: New Results From
Old Techniques. SIAM J. Comput. 43, 4 (2014), 1239–1262.

[8] Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, and Chi
Wang. 2020. Faster Graph Embeddings Via Coarsening. In International Confer-
ence on Machine Learning (ICML).

[9] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[10] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed deep graph
learning at scale. In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21). 551–568.

[11] Sariel Har-Peled and Akash Kushal. 2005. Smaller Coresets for K-Mediam and
K-Means Clustering. In ACM Annual Symposium on Computational Geometry
(ACG).

[12] David Harel and Yehuda Koren. 2002. A Fast Multi-scale Method for Drawing
Large Graphs. Journal of Graph Algorithms and Applications 6, 3 (2002), 179–202.

[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[14] Weihua Hu, Matthias Fey, Marinka Zitnk, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In Conference on Neural Information Processing
Systems (NeurIPS).

[15] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.
Scaling Up Graph Neural Networks Via Graph Coarsening. In ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD).

[16] Peng Jiang and Masuma Akter Rumi. 2021. Communication-efficient sam-
pling for distributed training of graph convolutional networks. arXiv preprint
arXiv:2101.07706 (2021).

[17] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang,
and Bing Yin. 2022. Condensing Graphs via One-Step Gradient Matching. In
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD).

[18] Wei Jin, Lingxiao Zhao, Schichang Zhang, Yozen Liu, Jiliang Tang, and Neil
Shah. 2022. Graph Condensation for Graph Neural Networks. In International

Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training WWW-DCAI ’24, May 13–17, 2024, Singapore

Conference on Learning Representations (ICLR).
[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[20] Manoj Kumar, Anurag Sharma, Shashwat Saxena, and Sandeep Kumar. 2023. Fea-
tured Graph Coarsening with Similarity Guarantees. In International Conference
on Machine Learning (ICML).

[21] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. 2017. Cay-
leyNets: Graph Convolutional Neural Networks with Complex Rational Spectral
Filters. IEEE Transactions on Signal Processing 67, 1 (2017), 97–109.

[22] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2021. MILE: A
Multi-Level Framework for Scalable Graph Embedding. In International AAAI
Conference on Web and Social Media (ICWSM).

[23] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. 2022. Graph Condensa-
tion via Receptive Field Distribution Matching. In Arxiv preprint.

[24] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2019. Graph Summa-
rization Methods and Applications: A Survey. Comput. Surveys 51, 62 (2019).

[25] Andreas Loukas. 2019. Graph Reduction with Spectral and Cut Guarantees.
Journal of Machine Learning Research 20, 116 (2019), 1–42.

[26] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. 2020. Coreset for Data-
efficient Training of Machine Learning Models. In International Conference on
Machine Learning (ICML).

[27] Ankur Moitra. 2009. Approximation Algorithms for Multicommodity-type Prob-
lems with Guarantees Independent of the Graph Size. In IEEE Symposium on
Foundation of Computer Science.

[28] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. 2021. Dataset Meta-Learning
from Kernel Ridge-Regression. In International Conference on Learning Represen-
tations (ICLR).

[29] Manish Purohit, B. Aditya Prakash, Chanhyun Kang, Yao Zhang, and V. S. Sub-
rahmanian. 2014. Fast Influence-based Coarsening for Large Networks. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD).

[30] Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut Kandemir, and
Anand Sivasubramaniam. 2021. Learn Locally, Correct Globally: A Distributed
Algorithm for Training Graph Neural Networks. In International Conference on
Learning Representations.

[31] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Magazine
29, 3 (2008).

[32] Ozan Sener and Silvio Savarses. 2018. Active Learning for Convolutional Neu-
ral Networks: A Core-Set Approach. In International Conference on Learning
Representations (ICLR).

[33] Ilia Sucholutsky and Matthias Schonlau. 2020. Soft-Label Dataset Distillation
and Text Dataset Distillation. In Arxiv preprint.

[34] Ivor W. Tsang, James T. Kwok, and Pak-Min Cheung. 2005. Core Vector Machines:
Fast SVM Training on Very Large Data Sets. Journal of Machine Learning Research
6 (2005), 363–392.

[35] Chris Walshaw. 2006. A Multilevel Algorithm for Force-Directed Graph Drawing.
Journal of Graph Algorithms and Applications 7, 3 (2006), 253–285.

[36] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[37] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. 2018.
Dataset Distillation. In Arxiv preprint.

[38] Max Welling. 2009. Herding Dynamical Weights to Learn. In International Con-
ference on Machine Learning (ICML).

[39] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu,
and Kilian Q. Wienberger. 2019. Simplifying Graph Convolutional Networks. In
International Conference on Machine Learning (ICML).

[40] Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun, Zhichong Fang, Bo
Zhang, and Leyu Lin. 2020. COSINE: Compressive Network Embedding on
Large-Scale Information Networks. In IEEE Transactions on Knowledge and Data
Engineering.

[41] Bo Zhao and Hakan Bilen. 2021. Dataset Condensation with Differentiable
Siamese Augmentation. In International Conference on Machine Learning (ICML).

[42] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2021. Dataset Condensation
with Gradient Matching. In International Conference on Learning Representations
(ICLR).

[43] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. Distdgl: distributed graph neural
network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.

[44] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis.
2021. Distributed Hybrid CPU and GPU training for Graph Neural Networks on
Billion-Scale Graphs. arXiv preprint arXiv:2112.15345 (2021).

[45] Jiong Zhu, Aishwarya Naresh Reganti, Edward W Huang, Charles Andrew Dick-
ens, Nikhil Rao, Karthik Subbian, and Danai Koutra. 2023. Simplifying Distributed

Neural Network Training on Massive Graphs: Randomized Partitions Improve
Model Aggregation. In ICML Workshop on Localized Learning (LLW).

WWW-DCAI ’24, May 13–17, 2024, Singapore C. Dickens et al.

A APPENDIX

The appendix includes the following sections: Extended ConvMatch:
Coarsening Via Convolution Matching, and Extended Evaluation.
All reported results are fully reproducible, with code and data avail-
able upon final submission.

B EXTENDED CONVMATCH: COARSENING

VIA CONVOLUTION MATCHING

In this section we expand on details of the ConvMatch: Coarsening
Via Convolution Matching algorithm. The ConvMatch algorithm
is illustrated in Figure 2.

B.1 Extended Step 1: Candidate Supernodes

Algorithm 2: CandidateSupernodes
input :Graph 𝐺 ′ = (V′, E′,X′), Number of neighbors per

node 𝑘1, Number of neighbors 𝑘2
output :Set of candidate supernodes candidates

1 candidates← ∅
2 H(𝐾)

𝑆𝐺𝐶
= (D̃−

1
2 ÃD̃−

1
2)𝐾X

3 //Compute the exact SGC matches.

4 candidates← candidates∪
{
(𝑖, 𝑗) |H(𝐾)

𝑆𝐺𝐶
[𝑖] = H(𝐾)

𝑆𝐺𝐶
[𝑗]

}
5 //Compute the nearest SGC matches for each node.

6 candidates← candidates ∪{
(𝑖, 𝑗) | 𝑗 ∈ argmin𝑘1

𝑗 ′

H(𝐾)
𝑆𝐺𝐶
[𝑖] − H(𝐾)

𝑆𝐺𝐶
[𝑗 ′]

1
1

}
7 //Compute the nearest SGC matches overall.

8 candidates← candidates ∪{
(𝑖, 𝑗) | (𝑖, 𝑗) ∈ argmin𝑘2(𝑖′, 𝑗 ′)

H(𝐾)
𝑆𝐺𝐶
[𝑖′] − H(𝐾)

𝑆𝐺𝐶
[𝑗 ′]

1
1

}

The initial supernode candidate set generation process is detailed
in Algorithm 2.Moreover, Figure 2 illustrates the initial merge graph
creation. To ensure every node has the potential to be merged into
a supernode, we find the top 𝑘𝑛𝑛-nearest neighbors for each node
and add the node pair to E𝑚𝑒𝑟𝑔𝑒 . Additionally, the nearest 𝑑𝑛𝑛% of
all node pairs are added to E𝑚𝑒𝑟𝑔𝑒 . The supernode candidate set
defines the merge-graph: 𝐺𝑚𝑒𝑟𝑔𝑒 = (V′, E𝑚𝑒𝑟𝑔𝑒), that is updated
throughout the coarsening processes. Specifically, all nodes from the
original graph are initially added to the merge-graph, i.e., initially,
V′ = V , then two nodes are connected in 𝐺𝑚𝑒𝑟𝑔𝑒 if their pair
exists in the candidate supernode set. Details on merging nodes in
the coarsened graph and the merge-graph are given in Appendix
B.3.

B.2 Extended Step 2: Computing Supernode

Costs

In Figure 2, edges in the merge graph are attributed with the cost
defined in Eq. (9). By definition of the GCN and coarse graph con-
volution operations, the effect of merging 𝑢 and 𝑣 can only reach
the one-hop neighborhood of the two supernodes. Let h𝑖 be the
representation of node 𝑖 at the level 𝑙 of coarsening: h𝑖 ≜ H̃(1)(𝑙) [𝑖].

Algorithm 3: ComputeCosts

input :Graph 𝐺 ′ = (V′, E′,X′), Node rep. H̃, Node pairs
candidates

output :Supernode cost map supernode_costs

1 supernode_costs← 𝑀𝑎𝑝 ()
2 for (𝑢, 𝑣) ∈ candidates do

3 _, P, H̃′, _← Merge(V′, E′,X′, {(𝑢, 𝑣)})
4 supernode_costs[(𝑢, 𝑣)] ← ∥PH̃′ − H̃∥11

Additionally, define h′
𝑖
to be the representation of node 𝑖 after merg-

ing supernodes𝑢 and 𝑣 : h′
𝑖
≜ P(𝑢,𝑣) H̃

(1)
(𝑙,P(𝑢,𝑣))

[𝑖]. With this notation,
the cost function is equivalently:

𝑐𝑜𝑠𝑡 (𝑢, 𝑣) = ∥h𝑢 − h′(𝑢,𝑣) ∥
1
1 + ∥h𝑣 − h′(𝑢,𝑣) ∥

1
1 +

∑︁
𝑖∈N({𝑢,𝑣})

∥h𝑖 − h′𝑖 ∥
1
1

(11)

where, h′(𝑢,𝑣) is the representation of the supernode created by
the merge. Algorithm 3 details the cost computation process for
ConvMatch. Additionally, Figure 3 illustrates the cost computation
for a small subgraph.

B.3 Extended Step 3: Merging Nodes

The top-𝑘 non-overlapping lowest-cost candidate supernodes are
merged simultaneously at every level of coarsening. Figure 2 illus-
trates how node merging is performed to obtain higher levels of
coarsening, i.e., level-𝑙 merge- and coarsened-graphs. For each pair
of nodes, (𝑢, 𝑣), being merged, the set of edges incident with the
resulting supernode is inherited from the nodes 𝑢 and 𝑣 . Specifi-
cally, let src = {𝑤 ∈ V | (𝑤,𝑢) ∈ E𝑙 ∨ (𝑤, 𝑣) ∈ E𝑙 } and dst = {𝑤 ∈
V | (𝑢,𝑤) ∈ E𝑙 ∨(𝑣,𝑤) ∈ E𝑙 }, where E𝑙 is the edge set of the graph
at the coarsening level 𝑙 . Then the edges incidentwith the supernode
created by merging 𝑢, 𝑣 is: {(𝑠,𝑤) |𝑤 ∈ dst} ∪ {(𝑤, 𝑠) |𝑤 ∈ src}.
Furthermore, the edges connecting supernodes in the resulting
coarsened graph are weighted by the number of edges connecting
nodes in the two incident supernodes. Recall, if P is the partitioning
matrix representing the assignment of nodes to supernodes, then
the coarsened graph’s weighted adjacency matrix is A′ = P𝑇AP.
Moreover, the features of the supernodes are a weighted average
of the features of the nodes being merged: X′ = P𝑇C−1X.

When two nodes are merged, the merge-graph is also updated.
As in the coarsened graph, when supernodes 𝑢 and 𝑣 are merged to
create a new supernode, the new supernode is connected to every
neighbor of 𝑢 and 𝑣 . This is illustrated in Figure 2. If A𝑚𝑒𝑟𝑔𝑒,𝑙 is
the adjacency matrix of the merge-graph at the coarsening level,
then after partitioning nodes by P(𝑙+1) , we have A′

𝑚𝑒𝑟𝑔𝑒,𝑙+1 =

P𝑇(𝑙+1)A𝑚𝑒𝑟𝑔𝑒,𝑙P(𝑙+1) . However, the weights of the merge-graph
adjacency matrix are irrelevant to the coarsening algorithm. In ad-
dition to updating the structure of the merge-graph after a merge,
costs must also be recomputed. A scalable method for updating
costs is described in Appendix B.5.

Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training WWW-DCAI ’24, May 13–17, 2024, Singapore

Figure 2: Illustration of the ConvMatch algorithm. Nodes with similar SGC embeddings obtained from the original graph are

first connected in a merge-graph. The cost 𝑐𝑖, 𝑗 of merging every pair of nodes (𝑖, 𝑗) in the merge-graph is then computed and a

set of lowest-cost node pairs are merged into supernodes. This process is repeated until the desired coarsening ratio is reached.

Figure 3: (a) A portion of a graph with computed representations h𝑖 for each node 𝑖 ∈ V. (b) A portion of a graph with the nodes

9 and 11 merged into a supernode. The updated representations of the nodes 8 and 10 denoted by h′8 and h′10, respectively. The
representation of the supernode resulting from the merge is h′(9,11) . (c) The cost of merging the nodes 9 and 11 is the sum of the

absolute differences in the representations caused by the merge.

B.4 Caching Node Summation Terms

In this subsection, we introduce a technique for scaling the exact
supernode cost computation. By definition, the representation of a
supernode 𝑖 obtained via a single layer of coarse GCN convolution

is

h𝑖 =
|𝐶𝑖 |

𝑑𝑖 + |𝐶𝑖 |
x𝑖 +

1√︁
𝑑𝑖 + |𝐶𝑖 |

∑︁
𝑗∈N({𝑖 })

𝑎 𝑗𝑖√︁
𝑑 𝑗 + |𝐶 𝑗 |

x𝑗 (12)

WWW-DCAI ’24, May 13–17, 2024, Singapore C. Dickens et al.

where 𝑑𝑖 is the degree of node 𝑖 , x𝑖 is the attributes of node 𝑖 , and
𝑎 𝑗𝑖 is the adjacency matrix entry for row 𝑗 column 𝑖 , i.e., the weight
of the edge from node 𝑗 to 𝑖 . Define s𝑖 ≜

∑
𝑗∈N({𝑖 })

𝑎 𝑗𝑖√
𝑑 𝑗+|𝐶 𝑗 |

x𝑗 .

Then, for the nodes being merged, 𝑢 and 𝑣 , the new representation
after the merge is

h′(𝑢,𝑣) =
|𝐶𝑢 | + |𝐶𝑣 |

𝑑𝑖 + |𝐶𝑢 | + |𝐶𝑣 |
x(𝑢,𝑣) +

(s𝑢 − 𝑎𝑣,𝑢√
𝑑𝑣+|𝐶𝑣 |

x𝑣 + 𝑠𝑣 − 𝑎𝑢,𝑣√
𝑑𝑢+|𝐶𝑢 |

x𝑢)√︁
𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |

(13)

where x(𝑢,𝑣) is the attributes of the supernode created by merging
𝑢 and 𝑣 . Observe that if the value of s𝑖 is cached for each node,
then the coarse graph convolution output of a supernode created
by merging a pair of nodes does not require information from the
node neighbors.

Similarly, using the cached value of s𝑖 , the new representation
after the merge for a node 𝑖 ∈ N ({𝑢, 𝑣}) is simplified to

h′𝑖 =
|𝐶𝑖 |

𝑑𝑖 + |𝐶𝑖 |
x𝑖 +

1√︁
𝑑𝑖 + |𝐶𝑖 |

s𝑖 +
𝑎𝑢𝑖 + 𝑎𝑣𝑖√︁

(𝑑𝑖 + |𝐶𝑖 |) (𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)
x(𝑢,𝑣)

− 𝑎𝑢𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |) (𝑑𝑢 + |𝐶𝑢 |)

x𝑢 −
𝑎𝑣𝑖√︁

(𝑑𝑖 + |𝐶𝑖 |) (𝑑𝑣 + |𝐶𝑣 |)
x𝑣 (14)

The benefit of caching s𝑖 is that no information from the 2-hop
neighbors of the nodes being considered for merging needs to be
obtained.

The cached statistics for each node are therefore updated using
the following rules:

s(𝑢,𝑣) = s𝑢 −
𝑎𝑣,𝑢√︁
𝑑𝑣 + |𝐶𝑣 |

x𝑣 + s𝑣 −
𝑎𝑢,𝑣√︁

𝑑𝑢 + |𝐶𝑢 |
x𝑢 (15)

Note that the influence and sum statistics of the neighbors of the
merged nodes must also be updated as the graph’s structure is
updated.

s′𝑖 = s𝑖 −
𝑎𝑢,𝑖√︁

𝑑𝑢 + |𝐶𝑢 |
x𝑢 −

𝑎𝑣,𝑖√︁
𝑑𝑣 + |𝐶𝑣 |

x𝑣 +
𝑎𝑢,𝑖 + 𝑎𝑣,𝑖√︁

𝑑𝑢 + 𝑑𝑣 + |𝐶𝑢 | + |𝐶𝑣 |
x(𝑢,𝑣) (16)

B.5 A Supernode Cost Approximation

An approximation yielding significant improvements in graph sum-
marization time is motivated by the upper bound on the merge cost
approximation stated in Theorem 1. This subsection provides the
proof for this theorem.

Proof of Theorem 1. Let h𝑖 be the representation of node 𝑖
at the level 𝑙 of coarsening: h𝑖 ≜ H̃(1)(𝑙) [𝑖]. Additionally, define
h′
𝑖
to be the representation of node 𝑖 after merging supernodes 𝑢

and 𝑣 : h′
𝑖
≜ P(𝑢,𝑣) H̃

(1)
(𝑙,P(𝑢,𝑣))

[𝑖]. Starting from the definition of the
supernode cost provided in Eq. (9), we have:

𝑐𝑜𝑠𝑡 (𝑢, 𝑣) = ∥h𝑢 − h′(𝑢,𝑣) ∥
1
1 + ∥h𝑣 − h′(𝑢,𝑣) ∥

1
1 +

∑︁
𝑖∈N({𝑢,𝑣})

∥h𝑖 − h′𝑖 ∥11

(17)

By the definitions of h𝑖 and h′
𝑖
provided in the previous section, the

∥h𝑖 − h′
𝑖
∥11 terms in the summation can be expanded and simplified

∥h𝑖 − h′𝑖 ∥11 = ∥ |𝐶𝑖 |
𝑑𝑖 + |𝐶𝑖 |

x𝑖 +
1√︁

𝑑𝑖 + |𝐶𝑖 |

∑︁
𝑗 ∈N({𝑖})

𝑎 𝑗𝑖√︁
𝑑 𝑗 + |𝐶 𝑗 |

x𝑗

− |𝐶𝑖 |
𝑑𝑖 − |𝐶𝑖 |

x𝑖 −
1√︁

𝑑𝑖 + |𝐶𝑖 |

∑︁
𝑗 ∈N({𝑖})\{𝑢,𝑣}

𝑎 𝑗𝑖√︁
𝑑 𝑗 + |𝐶 𝑗 |

x𝑗

− 𝑎𝑢,𝑖 + 𝑎𝑣,𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |) (𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)

x(𝑢,𝑣) ∥11

= ∥ 𝑎𝑢,𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |) (𝑑𝑢 + |𝐶𝑢 |)

x𝑢 +
𝑎𝑣,𝑖√︁

(𝑑𝑖 + |𝐶𝑖 |) (𝑑𝑣 + |𝐶𝑣 |)
x𝑣

− 𝑎𝑢,𝑖 + 𝑎𝑣,𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |) (𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)

x(𝑢,𝑣) ∥11 (18)

Then, using the sub-additivity and absolute homogeneity properties
of norms we realize the following inequality.

= ∥
𝑎𝑢,𝑖√︁

(𝑑𝑖 + |𝐶𝑖 |) (𝑑𝑢 + |𝐶𝑢 |)
x𝑢 +

𝑎𝑣,𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |) (𝑑𝑣 + |𝐶𝑣 |)

x𝑣

−
𝑎𝑢,𝑖 + 𝑎𝑣,𝑖√︁

(𝑑𝑖 + |𝐶𝑖 |) (𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)
x(𝑢,𝑣) ∥11

≤
𝑎𝑢,𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |)

∥ 1√︁
(𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)

x(𝑢,𝑣) −
1√︁

(𝑑𝑢 + |𝐶𝑢 |)
x𝑢 ∥11

+
𝑎𝑣,𝑖√︁

(𝑑𝑖 + |𝐶𝑖 |)
∥ 1√︁
(𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)

x(𝑢,𝑣) −
1√︁

(𝑑𝑣 + |𝐶𝑣 |)
x𝑣 ∥11
(19)

Observe if one of 𝑎𝑣,𝑖 or 𝑎𝑢,𝑖 is 0, the inequality is satisfied with
equality. Plugging this result into the definition of supernode costs
yields our upper bound.

𝑐𝑜𝑠𝑡 (𝑢, 𝑣) ≤ ∥h𝑢 − h′(𝑢,𝑣) ∥
1
1 + ∥h𝑣 − h′(𝑢,𝑣) ∥

1
1

+ ∥
x(𝑢,𝑣)√︁

(𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)
− x𝑢√︁
(𝑑𝑢 + |𝐶𝑢 |)

∥11
∑︁

𝑖∈N({𝑢})

𝑎𝑢,𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |)

+ ∥
x(𝑢,𝑣)√︁

(𝑑 (𝑢,𝑣) + |𝐶𝑢 | + |𝐶𝑣 |)
− x𝑣√︁
(𝑑𝑣 + |𝐶𝑣 |)

∥11
∑︁

𝑖∈N({𝑣})

𝑎𝑣,𝑖√︁
(𝑑𝑖 + |𝐶𝑖 |)

(20)

In the case N(𝑢) ∩ N (𝑣) = ∅, every instance of the bound in Eq.
(B.5) is satisfied with equality, and consequentially the bound above
is satisfied with equality. □

As a result, the following term, referred to as the node’s influence,
is cached for all nodes 𝑣 ∈ V: infl𝑣 ≜

∑
𝑖∈N({𝑣})

𝑎𝑣𝑖√
(𝑑𝑖+|𝐶𝑖 |)

.

This allows the cost of merging two nodes to be a function of
properties local to the two nodes being considered, making the cost
computation fast and highly scalable.

In addition to updating the structure of the merge-graph after a
merge, the costs and the cached influence scores for each node must
be updated. The influence of the supernode created by merging two
nodes 𝑢 and 𝑣 is:

infl𝑙,(𝑢,𝑣) =

(
infl𝑙,𝑢 −

𝑎𝑢𝑣√︁
𝑑𝑣 + |𝐶𝑣 |

)
+

(
infl𝑣 −

𝑎𝑣,𝑢√︁
𝑑𝑢 + |𝐶𝑢 |

)
. (21)

Furthermore, the influence score of each neighbor, 𝑖 , of two merged
nodes 𝑢 and 𝑣 is:

infl𝑙,𝑖 = infl𝑙,𝑖 −
𝑎𝑖𝑢√︁

𝑑𝑢 + |𝐶𝑢 |
− 𝑎𝑖𝑣√︁

𝑑𝑣 + |𝐶𝑣 |
+ 𝑎𝑢𝑖 + 𝑎𝑣𝑖√︁

𝑑𝑢 + 𝑑𝑣 + |𝐶𝑢 | + |𝐶𝑣 |
.

(22)

Graph Coarsening via Convolution Matching
for Scalable Graph Neural Network Training WWW-DCAI ’24, May 13–17, 2024, Singapore

C EXTENDED EVALUATION

Baselines. The RS method randomly samples nodes from the origi-
nal graph and uses the induced subgraph to train the GNN. Herding
and KCenter first fit node embeddings for the NC task and then
group the nodes by labels. The Herding and KCenter methods then
select nodes from each group to create a subgraph. Herding and
KCenter require a class label to group nodes are therefore only
used in NC settings. Furthermore, the implementation of Herding
and KCenter follows that of [17]. The original implementation was
extended to reach coarsening ratios exceeding the training labeling
rate of the dataset by treating the the unlabeled nodes as a distinct
class in such settings. GCond [18] and DosCond [17] train a GNN on
the original graph and fit synthetic graph features and connections
so the gradient with respect to the GNN weights computed with
both graphs are similar. We use the implementation of GCond and
DosCond provided in [17] for NC tasks and extend their method
for LP using an appropriate link prediction training loss. Further-
more, to support coarsening ratios exceeding the training labeling
rate of the dataset, synthetic node features are initialized using a
sampling procedure with replacement. Finally, the VN approach is
a coarsening algorithm proposed by Loukas (2019) that recursively
merges neighborhoods of nodes into supernodes. Huang et al. (2021)

found VN resulted in the best overall prediction performance of
the coarsening algorithms proposed by Loukas (2019). We use the
implementation of VN provided by Huang et al. (2021).

Model Architectures and Hyperparameters. The GCN archi-
tectures and training parameters for Citeseer and Cora are from
[17] and the GCN architectures and training parameters for OGB
datasets are from [14]. Every GCN is trained using the ADAM opti-
mizer implementation from PyTorch. The Table 6 summarizes the
parameters used in the experiments.

The hyperparameters for the ConvMatch and A-ConvMatch
algorithms were tuned for each dataset using validation data at
a summarization rate 𝑟 = 1% and at a selected batch size. The
Table 7 summarizes the final parameters used in the experiments.
Hyperparameter settings for VN and the two coreset baselines
(Herding and KCenter) are taken from [15] and [17], respectively.
Hyperparameter settings for the GCond and DosCond methods are
taken from [17] on the datasets they examined, otherwise, they are
found via a hyperparameter search.
Hardware. All experiments were run on an AWS p3.16xlarge EC2
instance with 8 16GB NVIDIA Tesla V100 GPUs.

Received 10 March 2024

WWW-DCAI ’24, May 13–17, 2024, Singapore C. Dickens et al.

Dataset Num Layers Hidden Dim Learning Rate Dropout Weight Decay

Citeseer LP 2 256 1.0e-2 0.5 0.0
Cora LP 2 256 1.0e-2 0.5 0.0
OGBLCol 3 256 1.0e-3 0.0 0.0
OGBLCit2 3 256 5.0e-4 0.0 0.0

Citeseer NC 2 256 1.0e-2 0.5 5.0e-4
Cora NC 2 256 1.0e-2 0.5 5.0e-4

OGBNArxiv 3 256 1.0e-2 0.5 0.0
OGBNProd 3 256 1.0e-2 0.5 0.0

Table 6: Table of GCN network and training hyperparameters.

Dataset Merge Batch Size SGC-K PCA Dim Top-𝑘𝑛𝑛 𝑑𝑛𝑛

Citeseer LP 1 [2, 3, 4*] [5, 10*, 15] [1*, 3] [0.01*, 0.1, 0.5]
Cora LP 10 [2, 3, 4*] [5, 10, 15*] [1*, 3] [0.01*, 0.1, 0.5]
OGBLCol 10,000 [2*, 3, 4] [10, 20*] [1*, 3] [0.001*, 0.01, 0.1]
OGBLCit2 10,000 [2*, 3] [10*, 20] [1*, 3] [0.001*, 0.01]

Citeseer NC 1 [2, 3*, 4] [5*, 10, 15] [1, 3*] [0.01, 0.1*, 0.5]
Cora NC 10 [2, 3*, 4] [5, 10, 15*] [1*, 3] [0.01*, 0.1, 0.5]

OGBNArxiv 10,000 [2, 3*, 4] [10, 20*] [1*, 3] [0.001, 0.01*, 0.1]
OGBNProd 100,000 [2*, 3] [10*, 20] [1*, 3] [0.001*, 0.01]

Table 7: Table of ConvMatch hyperparameters.

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Preliminaries
	4 ConvMatch: Coarsening Via Convolution Matching
	4.1 Convolution Matching Objective
	4.2 ConvMatch

	5 Experiments
	5.1 (RQ1) Runtime and Memory Efficiency
	5.2 (RQ2) Downstream Task Prediction Performance
	5.3 Ablation for ConvMatch Merge Batch Size

	6 Conclusion and Future Work
	References
	A Appendix
	B Extended ConvMatch: Coarsening Via Convolution Matching
	B.1 Extended Step 1: Candidate Supernodes
	B.2 Extended Step 2: Computing Supernode Costs
	B.3 Extended Step 3: Merging Nodes
	B.4 Caching Node Summation Terms
	B.5 A Supernode Cost Approximation

	C Extended Evaluation

