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ABSTRACT
Time series forecasting holds significant value in various applica-
tion scenarios. However, existing forecasting methods primarily
focus on optimizing model architecture while neglecting the sub-
stantial impact of data quality on model learning. In this study, we
aim to enhance model performance by optimizing data utilization
based on data quality and propose a Data Quality-based Gradient
Optimization (DQGO) method to facilitate training of recurrent
neural networks. Firstly, we define sample quality as the matching
degree between samples and model, and suggest using the atten-
tion entropy to calculate the sample quality through an attention
mechanism. Secondly, we optimize the model’s gradient vector by
giving different weights to samples with different quality. Through
experiments conducted on six datasets, the results demonstrate
that DQGO significantly improves LSTM’s performance. In certain
cases, it even surpasses the state-of-the-art models.

KEYWORDS
Data quality,Gradient optimization,Time series, Recurrent neural
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1 INTRODUCTION
Time series prediction (TSF) is an indispensable artificial intelli-
gence technology for various optimization control systems, such as
the emergency traffic route planning system [1], power equipment
intelligent maintenance system [2], and new energy generation
plan [3]. However, existing TSF models based on Recurrent Neural
Network (RNN) [4–6], Graph Neural Network (GNN) [7, 8], and
Transformer framework [9–12] primarily focus on constructing
robust models to facilitate temporal feature mining and achieve
accurate predictions while overlooking the significant influence of
data quality on model learning.

For time series, the discussion on the impact of noise data on
model learning is necessary due to the common occurrence of
low-quality (noise) time series data resulting from system failures
or external interference in practical environments [13]. Although
scholars have recently focused on investigating the influence of
data on models [14], existing methods such as DataShapely [15],
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Influence function [16], and others [17–21] primarily address image
and text data. However, these methods may not be optimal for
analyzing time series data as they overlook its temporal dependence
relationship.

Therefore, in this paper, we propose the Data Quality-based
GradientOptimization method to enhance the performance of RNN.
In DQGO, our aim is to address two key issues:❶Quality evaluation
for time series. We design a sample quality evaluation method based
on attention mechanism to fully exploit temporal dependencies in
sequences. ❷ Gradient optimization based on sample quality. We
propose assigning different weights to samples according to their
normalized quality scores, aiming to reducing the influence of low-
quality samples.

To the best of our knowledge, this study represents the first
attempt to evaluate data quality for time series through temporal
dependence in sequences. Moreover, our proposed method allows
for direct assessment of sample quality during model training, of-
fering advantages over removal-based approaches. Experimental
results on six datasets demonstrate that the LSTM model enhanced
by DQGO outperforms current state-of-the-art models in terms of
forecasting performance.

2 RELATEDWORK
2.1 Time series forecasting
RNN is widely used in TSF, with LSTM and Gate Recurrent Unit
(GRU) receiving extensive attention [6]. Transformer-based mod-
els are also a recommended solution for TSF. Informer [9], Auto-
former [10], Pyraformer [22], FEDformer [11] and Crossformer [12]
are representative models. Researchers often incorporate attention
mechanisms and graph neural networks (GNNs) into model to
improve predictive performance. For example, Guo et al. [7] de-
signed a novel self-attention mechanism in GNN to predict traffic
flow. Huang et al. [8] integrated the diffusion convolution neural
network and a modified transformer to learn spatial-temporal de-
pendence for traffic demand prediction. Existing works focus on
re-structuring or optimizing neural network architecture, while
overlook the influence of low-quality samples in practical time se-
ries data, which can significantly impact the representation learning
of temporal dependence features.



2.2 Sample quality evaluation
The sample quality-based methods for model training can be di-
vided into two categories: removing-based and reordering-based.
(1) Removing-based methods. These methods discard the so-called
low-quality samples based on a valuation method [15, 16]. Main-
stream approaches include data shapely [23], influence function
[24], gradient-based influence function [16], and so on. These meth-
ods are associated with image classification tasks. Besides, some
researchers propose to utilize sample feature to assess sample qual-
ity, such as accuracy, completeness, consistency and so on [25, 26].
For natural language data, the evaluation is based on simplicity and
comprehensibility. (2) Reordering-based methods are known as the
curriculum learning (CL) methods. Bengio mentioned in his original
work that the basic idea of such methods is to first train the model
with easy samples, and then gradually increase the difficult samples
until the whole training datasets [27]. The automatic curriculum
learning method which measures sample quality based on training
loss is popular, with self-paced learning (SPL) and teacher-student
learning (TSL) approaches receiving extensive attention [28, 29].
Removing-based methods directly delete samples, but it is diffi-
cult to determine how many samples should be deleted. Although
reordering-based methods adjust the learning order of samples, the
disadvantage of such methods is they ignore the cases where those
hard-to-learn samples still affect model learning, especially in the
later stages of the learning phase. Our proposed DQGO enables di-
rect evaluation of sample quality during model training, providing
advantages over removing-based and reordering-based methods.

3 PROBLEM FORMULATION
In this paper, denoted by x𝑖 the 𝑖-th time series sample in dataset
X ∈ 𝑅𝑁×(ℎ+𝑞) . 𝑁 is the number of samples. The length of sample
is ℎ + 𝑞. The unbold letter 𝑥𝑖 corresponds to an element in x𝑖 , and
the superscript of 𝑥𝑖 is used to indicate the time slot.

Problem 1. (Time Series Forecasting)Given the sequence x𝑡−ℎ+1:𝑡
𝑖

=

[𝑥𝑡−ℎ+1
𝑖

, . . . , 𝑥𝑡
𝑖
] with length ℎ, inferring x𝑡+1:𝑡+𝑞

𝑖
= [𝑥𝑡+1

𝑖
, . . . , 𝑥

𝑡+𝑞
𝑖
]

the values in next𝑞 time slots based on a learnable modelM. Formally,
the time series forecasting problem is defined as follows:

x𝑡+1:𝑡+𝑞
𝑖

=M(x𝑡−ℎ+1:𝑡𝑖 ) (1)

Most existing studies on TSF assume that all samples have equal
influence on optimizingM. However, this assumption is overly
idealistic. In this paper, we introduce the concept of sample quality
to quantify the impact of each sample on the model.

Definition 1. (Sample Quality) Given a sample x𝑖 , sample
quality𝑄 reflects how well sample x𝑖 matches the modelM. Formally,

𝑄 = E(x𝑖 |M) (2)

where E is the metrics used to quantify sample quality.

For instance, by considering LSTM asM and MAE as E, 𝑄 is to
evaluate how well x𝑖 matches the LSTM based on MAE. Sample
quality provides us the basis for how to optimize the impact of
poorly matched samples (called as low-quality samples) on the
model. Specifically, here MAE is merely provided as an illustrative
example, we will define a better metrics E in next section. For
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Figure 1: Framework of DQGO

simplicity, we use 𝑄𝑖 to denote the 𝑖-th sample’s sample quality in
the later chapters.

4 OUR METHOD: DQGO
Figure 1 depicts the overview of DQGO. Firstly, we design an in-
formation entropy-based sample quality evaluation method which
connects to the model through attention module. Secondly, we take
the reweighted sample gradients as input and compute the update
gradient vector for the model.

4.1 Sample Quality Evaluation
In this paper, we aim to enhance the prediction performance of
RNN, so LSTM is selected as the basic modelM. For evaluating the
metrics E, we define a novel attention entropy (AE) which takes
the attention weight as input.

This idea ismotivated by the regression task. For example,𝑥𝑡+1:𝑡+𝑞
𝑖

=

𝑤0
𝑖
𝑥𝑡
𝑖
+ 𝑤1

𝑖
𝑥𝑡−1
𝑖
+ · · · + 𝑤ℎ−1

𝑖
𝑥𝑡−ℎ+1
𝑖

. 𝑤𝜏
𝑖
(𝜏 ∈ [0, ℎ − 1]) is the

item weight, which reflects the importance of its corresponding
observation. For TSF task, we usually incorporate attention mech-
anism into LSTM, where the attention weights also serve as in-
dicators of the significance of observed values. Furthermore, we
posit that the attention distribution exhibits a correlation with
the sample quality. These two characteristics can be modeled us-
ing information entropy based on the attention weight. To vali-
date the correctness of our inference, we visually examined the
correlation between AE and MAE using the ETTh1 dataset, as il-
lustrated in Figure 2. The relationship between AE and MAE is
inversely proportional, following a quadratic polynomial function
(𝐴𝐸 = −0.6462 ∗𝑀𝐴𝐸2 − 0.1816 ∗𝑀𝐴𝐸 + 6.171), exhibiting an R-
square value of 0.8326 and an RMSE value of 0.0496. The results
indicate that a sample with bigger AE will has smaller MAE and
vice versa. In our previous study [6], we have validated that the
model enhances its prediction accuracy by assigning greater impor-
tance to input data with similar shapes. Consequently, we propose
the following physical explanation for the inverse relationship be-
tween them: each element in a high-quality sample should make
a significant contribution to future values; conversely, only a few
elements in a low-quality sample are crucial for predicting future
values.

The calculation procedure of the proposed sample quality metric
AE is presented as follows:

c𝑖 = [b𝜅𝑖 e
0
𝑖

𝑇
, . . . , b𝜅𝑖 e

ℎ−1
𝑖

𝑇 ] (3)
w𝜅
𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (c𝑖 ) (4)
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Figure 2: The relationship between AE and MAE on ETTh1
dataset

where b𝜅𝑖 is the hidden state of the 𝜅-th decoder unit in LSTM
and e0

𝑖
, . . . , eℎ−1

𝑖
are encoder hidden states. For 𝑞-steps prediction,

sample 𝑖 has the weight matrixW𝑖 :

W𝑖 =



w𝑡+1
𝑖
.
.
.

w𝜅
𝑖
.
.
.

w𝑡+𝑞
𝑖

𝑞×ℎ
(5)

By using column-wise sum operation, convert matrix W𝑖 to vector
𝝎𝑖 ∈ 𝑅1×ℎ . Take the weights 𝝎𝑖 as input, the sample quality can be
calculated using the formula below.

E = −
ℎ−1∑︁
𝜏=0

𝑝 (𝜔𝜏
𝑖 )𝑙𝑜𝑔2𝑝 (𝜔

𝜏
𝑖 ) (6)

In Equation (6), 𝑝 (𝜔𝜏
𝑖
) = 𝜔𝜏

𝑖∑ℎ−1
𝜏=0 𝜔

𝜏
𝑖

is the normalization of 𝜔𝜏
𝑖
. We

define the metrics E as attention entropy (AE) based on the entropy
of weight sequence ([𝜔0

𝑖
, . . . , 𝜔ℎ−1

𝑖
]). As is mentioned above, when

the value of AE is the greatest, we have 𝑝 (𝜔0
𝑖
) = 𝑝 (𝜔1

𝑖
) = · · · =

𝑝 (𝜔ℎ−1
𝑖
) = 1

ℎ
. This indicates that each element in the history se-

quence x𝑡−ℎ+1:𝑡
𝑖

is as important as x𝑡+1:𝑡+𝑞
𝑖

. When the value of AE
is lesser, it means that the attention weight is focused on a subset
of the elements.

4.2 Sample Gradient Optimization
After obtaining the quality assessment, we designed a sample gra-
dient optimization method. Specifically, based on the evaluation
results of sample quality, we assign higher weights to high-quality
samples and lower weights to low-quality ones, thereby mitigating
the influence of low-quality samples on the model. Furthermore,
this process can be seamlessly integrated into training without
necessitating sample deletion or retraining.

The steps of sample gradient optimization are shown in Algo-
rithm 1. In step 2, we normalize the sample quality and subsequently

Algorithm 1 Sample Gradient Reweighing
Input:

Sample quality 𝑄𝑖 , 𝑖 = 1, . . . , 𝑛
Output:

Reweighing gradient 𝒈𝑖
1: Initialize set 𝐺 ←− {∅}
2: Normalize 𝑄𝑖 using the max-min method
3: for each sample in a batch do
4: 𝐺 ←− 𝐺 ∪ (𝑄𝑖 ∗ 𝒈𝑖 )
5: end for
6: 𝐺 ←− 1

𝑛 ∗
∑𝑛
𝑖=1 𝒈𝑖 , where 𝒈𝑖 ∈ 𝐺

7: Return 𝐺

apply a reweighting factor to each sample’s gradient, denoted as
𝑄𝑖 multiplied by the original gradient. In step 6, we take the mean
of reweighting gradient vectors of samples as the optimal gradient
update vector.

5 EXPERIMENTS
In this section, we designed the following experimental approaches
to evaluate the performance of DQGO:
• (1) Comparison with removing-based and reordering-based
methods (in Section 5.2). Four representative removing-based
methods are SGD-influence [24], g-shapely [23], GraNd [30]
and VoG [31]. For the reordering-based methods, we adopt
the Bootstrapping Curriculum Learning (BSCL) proposed in
[32].
• (2) Comparison with the state-of-the-art TSF models (in Sec-
tion 5.3). The LSTM, Informer [9], Crossformer [12], FED-
former [11], DLinear [33] and TimesNet [34] are used as
baselines.
• (3) Adding noise to samples (in Section 5.4). Evaluate the
efficacy of DQGO in handling noisy samples, comparing it
with the methodologies proposed in Approach (1) and (2).

5.1 Experimental Setup
As shown in Figure 3(a), the removing-based methods including
SGD-influence, g-shapely, GraNd and VoG, evaluate the sample
quality first, and then retrain the model after removing some low-
quality samples. BSCL is a reordering-based method (see Figure
3(b)). It reorders the training samples first using the proposed self-
taught method, and then uses the reordering samples to train the
model according to the curriculum plan and learning rate.

In experiments, the hidden size of an LSTM cell is set as 64, and
the number of layers is 1. The settings of Informer, Crossformer,
FEDformer, DLinear and TimesNet are consistent with the parame-
ters in paper [34]. Unless otherwise specified, the task is to predict
the next 96 values.

We evaluate our DQGO on six datasets including RED (Region
Electricity Demand1), PeMS (Performance Measurement System2),
two hourly ETT (Electricity Transformer Temperature3) datasets

1https://www.eia.gov/opendata/qb.php?category=3389943
2https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
3https://github.com/zhouhaoyi/ETDataset
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Figure 3: Implementation details

ETTh1 and ETTh2, Electricity4 and Exchange [35] dataset. To eval-
uate the prediction performance of each model, we use the mean
absolute error (MAE), Mean Absolute Percentage Error (MAPE)
and root mean square error (RMSE) as metrics.

5.2 Comparison with removing-based and
reordering-based methods

In Table 1, DQGO has the obvious advantage on all of the six
datasets except ETTh2 and Exchange. The results indicate that
DQGO is more suitable for time series on data quality evaluation
task. The quality assessment of time series in DQGO is realized
through the lens of information entropy. Its primary advantage lies
in its utilization of attention-based weights, which fully considers
the interplay between historical series and predicted values, thereby
better reflecting the data-model matching relationship. Additionally,
the working principle based on information entropy enhances its
interpretability, as demonstrated by the statistical results depicted
in Fig. 2. Although methods such as g-shapely, SGD-influence, VoG,
and GraNd have shown good performance on text and image data,
their evaluation principle fails to capture the temporal dynamics in
time series prediction by mining the matching relationship between
data and prediction tasks. Furthermore, it has been observed from
BSCL results that removing-based methods are not conducive to
model learning. On the other hand, both BSCL and DQGO enhance
model performance on the test set by increasing sample diversity
without deleting any data. However, BSCL overlooks the presence
of low-quality data which leads to suboptimal optimization effects
for model learning compared to DGQO.

Table 1: Performance comparison for effectiveness validation

Methods DQGO g-shapely SGD-
influence BSCL VoG GraNd

MAE 0.1108 0.1343 0.1252 0.1209 0.1269 0.1191
RMSE 0.1611 0.1584 0.1662 0.1455 0.1522 0.1444RED
MAPE 18.42 21.99 20.51 19.54 20.56 19.51
MAE 0.1678 0.2071 0.2039 0.2037 0.2105 0.2017
RMSE 0.2310 0.2579 0.2541 0.2527 0.2583 0.2483PeMS
MAPE 56.40 101.35 101.94 98.86 108.40 104.19
MAE 0.0509 0.0537 0.0530 0.0517 0.0647 0.0576
RMSE 0.0665 0.0694 0.0682 0.0660 0.0792 0.0713ETTh1
MAPE 14.39 15.37 15.27 14.89 18.63 16.59
MAE 0.0907 0.0866 0.0865 0.0856 0.0892 0.0899
RMSE 0.1229 0.1103 0.1102 0.1106 0.1129 0.1131ETTh2
MAPE 14.78 14.05 14.04 13.94 14.55 14.78
MAE 0.0646 0.0852 0.0813 0.0812 0.0799 0.0794
RMSE 0.0771 0.1023 0.0994 0.1003 0.0973 0.0969Electricity
MAPE 12.25 16.31 15.34 15.38 15.07 15.00
MAE 0.0616 0.0455 0.0460 0.0453 0.0454 0.0459
RMSE 0.0854 0.0575 0.0583 0.0571 0.0572 0.0579Exchange
MAPE 8.74 6.49 6.58 6.44 6.45 6.55

4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Table 2: Performance comparison with classical TSF models

Methods DQGO LSTM Informer Crossformer FEDformer DLinear TimesNet
MAE 0.1108 0.5026 0.1523 0.1837 0.1365 0.0972 0.1117
RMSE 0.1611 0.6757 0.1871 0.2277 0.1643 0.1285 0.1378RED
MAPE 18.42 81.42 23.11 26.80 22.38 14.54 18.45
MAE 0.1678 0.6662 0.2280 0.2146 0.3097 0.1654 0.2775
RMSE 0.2310 0.8558 0.2982 0.2557 0.3728 0.2099 0.3294PeMS
MAPE 56.40 346.72 102.67 118.25 190.21 77.18 176.53
MAE 0.0509 0.5643 0.1053 0.1162 0.1659 0.0748 0.0961
RMSE 0.0665 0.7326 0.1314 0.1362 0.1776 0.0928 0.1155ETTh1
MAPE 14.39 157.70 31.10 33.46 47.21 23.74 29.52
MAE 0.0907 0.6122 0.1139 0.2323 0.1523 0.0921 0.0865
RMSE 0.1229 0.7866 0.1554 0.2795 0.1742 0.1126 0.1088ETTh2
MAPE 14.78 101.02 18.06 34.99 24.93 14.65 13.63
MAE 0.0646 0.6728 0.1121 0.1105 0.1309 0.0733 0.0774
RMSE 0.0771 0.8833 0.1382 0.1266 0.1476 0.0895 0.0946Electricity
MAPE 12.25 127.69 21.49 21.24 23.79 14.62 14.67
MAE 0.0616 0.7043 0.3644 0.3358 0.1615 0.3042 0.0704
RMSE 0.0854 0.8814 0.4480 0.3642 0.1758 0.3545 0.0874Exchange
MAPE 8.74 96.79 49.07 42.98 22.38 37.40 10.07

Table 3: Impact of sample quality on DQGO

noise_ratio=0 noise_ratio=0.3
lstm-att DQGO lstm-att DQGO

powerLoad
MAE ↑0.1112 0.1108 ↑0.1200 0.1106
RMSE ↑0.1623 0.1611 ↑0.1658 0.1548
MAPE ↑0.1848 18.42% ↑19.98 18.43

PEMS04
MAE ↑0.1834 0.1678 ↓0.1700 0.1938
RMSE ↑0.2449 0.231 ↓0.2243 0.2649
MAPE ↑78.76 56.40 ↑72.82 72.50

ETTh1
MAE ↑0.0581 0.0509 ↓0.0622 0.0672
RMSE ↑0.1159 0.0665 ↓0.0915 0.1161
MAPE ↑16.35 14.39 ↓17.50 19.08

electricity
MAE ↑0.0651 0.0646 ↑0.0890 0.0782
RMSE ↑0.0792 0.0771 ↑0.1458 0.1145
MAPE ↑12.39 12.25 ↑16.73 14.85

ETTh2
MAE ↓0.0795 0.0907 ↑0.1035 0.0963
RMSE ↓0.0987 0.1229 ↑0.1495 0.1387
MAPE ↓12.95 14.78 ↑16.89 15.75

exchange
MAE ↓0.0561 0.0616 ↑0.0817 0.0688
RMSE ↓0.0729 0.0854 ↑0.1426 0.0863
MAPE ↓7.97 8.74 ↑11.57 9.89

5.3 Comparison with the state-of-the-art TSF
models

In the experiment, we conducted a comparative analysis between
the DQGO-enhanced LSTM and the mainstream TSF model. Sim-
ilar to Section 5.2, we employed “DQGO” as a representation of
LSTM, and the experimental outcomes are presented in Table 2.
Notably, DQGO exhibits superior performance on three datasets:
ETTh1, electricity, and Exchange. Additionally, considering the
potential involvement of the attention mechanism, we performed
an ablation experiment comparing the performance of DQGO with
that of attention-based LSTM (LSTM-ATT). In table 3, the results
demonstrate that DQGO outperforms LSTM-ATT substantiating
its effectiveness in enhancing LSTM’s performance. Among SOTA
models, both Dlinear and TimesNet exhibit better performance than
Transformer-based models; specifically, Dlinear performs excep-
tionally well on RED and PeMS datasets while TimesNet excels
on ETTh2 dataset. Overall findings from this experiment validate
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that incorporating DQGO can enhance LSTM’s efficacy to achieve
advanced levels.

5.4 Immunity to low-quality samples
In this section, we aim to test DQGO’s immunity capacity to low-
quality samples by adding noise to samples during training model.
The ratio of samples with noise is set to 0.3. Firstly, we test its ability
to identify the noise samples; Secondly, we compare its performance
with data quality methods and SOTA prediction models.

Table 4: Impact of noise on the methods which have sample
evaluation module

Methods DQGO g-shapely SGD-
influence BSCL VoG GraNd

RED
MAE 0.1106 0.1258 0.1331 0.1234 0.1237 0.1235
RMSE 0.1548 0.1514 0.1806 0.1539 0.1491 0.1489
MAPE 18.43 20.62 21.67 19.90 20.04 20.03

PeMS
MAE 0.1938 0.2135 0.2058 0.2060 0.2178 0.2301
RMSE 0.2649 0.2617 0.2666 0.2681 0.2683 0.2852
MAPE 72.50 110.78 103.53 100.92 119.63 135.32

ETTh1
MAE 0.0672 0.0536 0.0659 0.0534 0.0563 0.0565
RMSE 0.1161 0.0693 0.0947 0.0696 0.0703 0.0818
MAPE 19.08 15.35 19.19 15.37 16.16 16.68

ETTh2
MAE 0.0963 0.0881 0.0874 0.0858 0.0915 0.0868
RMSE 0.1387 0.1108 0.1105 0.1111 0.1150 0.1100
MAPE 15.75 14.43 14.23 13.98 15.04 14.19

Electricity
MAE 0.0782 0.0869 0.0819 0.0797 0.0818 0.0869
RMSE 0.1145 0.1043 0.0996 0.0972 0.0993 0.1048
MAPE 14.85 16.69 15.45 15.05 15.42 16.43

Exchange
MAE 0.0688 0.0483 0.0450 0.0454 0.0466 0.0579
RMSE 0.0863 0.0612 0.0568 0.0571 0.0594 0.0700
MAPE 9.89 6.92 6.39 6.45 6.64 8.22

Table 5: Impact of noise on TSF models

Methods DQGO LSTM Informer Crossformer FEDformer DLinear TimesNet

RED
MAE 0.1106 0.5696 0.1382 0.2042 0.1392 0.1501 0.1073
RMSE 0.1548 0.7643 0.1733 0.2413 0.1672 0.1894 0.1323
MAPE 18.43 94.61 22.52 29.60 22.91 21.83 17.68

PeMS
MAE 0.1938 0.7085 0.2145 0.2267 0.2836 0.2009 0.2770
RMSE 0.2649 0.9094 0.2790 0.2679 0.3358 0.2360 0.3285
MAPE 72.50 379.95 101.21 124.24 168.32 142.36 162.65

ETTh1
MAE 0.0672 0.7054 0.0903 0.1268 0.1591 0.1018 0.0678
RMSE 0.1161 0.9133 0.1134 0.1566 0.1909 0.1234 0.0840
MAPE 19.08 196.04 25.04 33.17 45.67 32.15 20.82

ETTh2
MAE 0.0963 0.6062 0.2377 0.2410 0.1305 0.1975 0.0841
RMSE 0.1387 0.7861 0.2806 0.2731 0.1514 0.2354 0.1048
MAPE 15.75 100.16 35.19 35.93 21.82 28.62 13.64

Electricity
MAE 0.0782 0.5169 0.1010 0.1222 0.1505 0.0987 0.0936
RMSE 0.1145 0.5381 0.1201 0.1395 0.1668 0.1182 0.1135
MAPE 14.85 98.29 20.16 23.54 29.39 19.87 17.83

Exchange
MAE 0.0688 0.6558 0.1878 0.3239 0.2311 0.5501 0.0701
RMSE 0.0863 0.8369 0.2266 0.3532 0.2438 0.6109 0.0869
MAPE 9.89 91.30 25.96 41.28 32.55 69.91 10.01

5.4.1 Identification of noisy samples. During training process, We
added the noise sample manually. Then, we count the proportions
of noise samples in the top 5%, 10%, 15% and 20% respectively. Fig. 4
shows the results on ETTh1 datasets. The results demonstrate that
DQGO outperforms other methods in terms of identifying noisy
samples. Moreover, from a DQGO perspective, noisy data can be
identified based on the matching relationship between data and
model since few data points noise sample can provide information
for the prediction task.

5.4.2 Training with noisy samples. In this experiment, we will ex-
amine the performance of the DQGO and other algorithms when
noise samples are included.

The prediction results of removing-based and reordering-based
methods are presented in Table 4. It can be seen that DQGO out-
performs other methods on RED, PeMS and Electricity datasets.
g-shapely, SGD-influence, BSCL and GraNd all performed well on
different data. These findings indicate that the inclusion of noise
samples does impact the model by comparing Table 4 and Table 1;
however, overall DQGO exhibits superior performance. In a similar
way, we present the results of TSF models trained on noisy data in
Table 5. It is evident that DQGO outperforms the state-of-the-art
TSF models, except for RED and ETTh2 datasets; TimesNet demon-
strates superior performance compared to Transformer-based mod-
els and DLinear. In Table 3, we also present the comparison of
DQGO and attention-based LSTM in the case of training with noisy
samples. The results indicate DQGO makes sense to reduce the
influence of noisy samples on model learning.

We analyze the results from the following perspectives: (1) Based
on the matching degree between the sample and the model, DQGO
can filter the noise samples; (2) Comparing Table 5 with Table
4, it becomes apparent that deep learning models in Table 5 do
not exhibit their advantages fully. These findings highlight that
optimizing model learning from a data-quality based data utiliza-
tion optimization strategy can yield favorable results even in the
presence of noise.

6 CONCLUSION
In this paper, we have innovatively developed the Data quality-
based gradient optimization method to facilitate the training of
RNNs. Considering the occurrence of low-quality time series data
is common due to system failures or external interference in practi-
cal applications, we aim to enhance the performance of TSF models
by optimizing the utilization of data based on data quality. To this
end, we initially developed a module for evaluating the quality
of samples, which employs a novel metric known as attention en-
tropy to quantify the quality of each sample. Subsequently, we
proposed assigning higher weights to high-quality samples and
lower weights to low-quality samples in order to optimize sam-
ple gradients and mitigate the impact of low-quality samples on
model learning. Multiple experiments were conducted to validate
the effectiveness of DQGO using an LSTM model. In the future, it is
necessary to explore a more general quality assessment approach
not only for RNNs. Additionally, for re-weighted gradients, we can
also explore alternative solutions to solve gradients not only the
mean operator used in DQGO.

5



REFERENCES
[1] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and

Haifeng Li. T-gcn: A temporal graph convolutional network for traffic prediction.
IEEE Transactions on Intelligent Transportation Systems, 21(9):3848–3858, 2020.

[2] Weige Liang, Chi Li, Lei Zhao, Xiaojia Yan, and Shiyan Sun. Summarization of
remaining life prediction methods for special power plants. Applied Sciences,
13(16):9365, 2023.

[3] Jelena Simeunović, Baptiste Schubnel, Pierre-Jean Alet, and Rafael E. Carrillo.
Spatio-temporal graph neural networks for multi-site pv power forecasting. IEEE
Transactions on Sustainable Energy, 13(2):1210–1220, 2022.

[4] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recur-
rent network training for long or event-based sequences. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29, pages 3882–3890. Curran Associates, Inc., 2016.

[5] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan
Liu. Recurrent neural networks for multivariate time series with missing values.
Scientific reports, 8(1):6085, 2018.

[6] Feihu Huang, Peiyu Yi, Jince Wang, Mengshi Li, and Jian Peng. Time-series
forecasting with shape attention. In 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 3299–3304. IEEE, 2022.

[7] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning
dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting.
IEEE Transactions on Knowledge and Data Engineering, 34(11):5415–5428, 2022.

[8] Feihu Huang, Peiyu Yi, Jince Wang, Mengshi Li, Jian Peng, and Xi Xiong. A
dynamical spatial-temporal graph neural network for traffic demand prediction.
Information Sciences, 594:286–304, 2022.

[9] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. Informer: Beyond efficient transformer for long sequence
time-series forecasting. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pages 11106–11115, 2021.

[10] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decom-
position transformers with auto-correlation for long-term series forecasting. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages
22419–22430. Curran Associates, Inc., 2021.

[11] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin.
FEDformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In Proceedings of the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning Research, pages 27268–27286.
PMLR, 2022.

[12] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-
dimension dependency for multivariate time series forecasting. In The Eleventh
International Conference on Learning Representations, pages 1–21, 2023.

[13] Jiaxian Chen, Ruyi Huang, Zhuyun Chen, Wentao Mao, and Weihua Li. Transfer
learning algorithms for bearing remaining useful life prediction: A comprehensive
review from an industrial application perspective. Mechanical Systems and Signal
Processing, 193:110239, 2023.

[14] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang,
Shaochen Zhong, and Xia Hu. Data-centric artificial intelligence: A survey. arXiv
preprint arXiv:2303.10158, 2023.

[15] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for
machine learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
International Conference onMachine Learning, volume 97, pages 2242–2251. PMLR,
2019.

[16] Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models
trained with sgd. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alche-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32, pages 4215–4224. Curran Associates, Inc., 2019.

[17] Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér
Kiss, Sebastian Nilsson, and Rik Sarkar. The shapley value in machine learning.
In Luc De Raedt, editor, Proceedings of the 31st International Joint Conference
on Artifical Intelligence, IJCAI-ECAI 2022, pages 5572–5579. International Joint
Conferences on Artificial Intelligence Organization, July 2022.

[18] Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework
for machine learning. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de
Meent, editors, Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pages 6388–6421. PMLR, 25–27 Apr 2023.

[19] Zhaoxuan Wu, Yao Shu, and Bryan Kian Hsiang Low. DAVINZ: Data valuation
using deep neural networks at initialization. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 24150–24176. PMLR, 17–23 Jul
2022.

[20] Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, and Shao-Lun Huang.
Less is better: Unweighted data subsampling via influence function. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 6340–6347,

2020.
[21] Donghoon Lee, Hyunsin Park, Trung Pham, and Chang D Yoo. Learning augmen-

tation network via influence functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10961–10970, 2020.

[22] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and
Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-
range time series modeling and forecasting. In International Conference on
Learning Representations, pages 1–20, 2022.

[23] Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura,
Ce Zhang, Bo Li, and Dawn Song. Scalability vs. utility: Do we have to sac-
rifice one for the other in data importance quantification? In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8235–8243,
2021.

[24] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influ-
ence functions. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 1885–1894. JMLR.org, 2017.

[25] Ikbal Taleb, Mohamed Adel Serhani, Chafik Bouhaddioui, and Rachida Dssouli.
Big data quality framework: a holistic approach to continuous quality manage-
ment. Journal of Big Data, 8(1):1–41, 2021.

[26] Sergey Redyuk, Zoi Kaoudi, Volker Markl, and Sebastian Schelter. Automating
data quality validation for dynamic data ingestion. In International Conference
on Extending DB Technology, pages 61–72, 2021.

[27] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48, 2009.

[28] Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):4555–4576,
2022.

[29] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann.
Self-paced curriculum learning. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, pages 2694–2700, 2015.

[30] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning
on a data diet: Finding important examples early in training. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, volume 34, pages 20596–20607.
Curran Associates, Inc., 2021.

[31] Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example diffi-
culty using variance of gradients. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10368–10378, 2022.

[32] Guy Hacohen and Daphna Weinshall. On the power of curriculum learning
in training deep networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 2535–2544. PMLR,
09–15 Jun 2019.

[33] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective
for time series forecasting? In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 11121–11128, 2023.

[34] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng
Long. Timesnet: Temporal 2d-variation modeling for general time series analysis.
In International Conference on Learning Representations, pages 1–23, 2023.

[35] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-
and short-term temporal patterns with deep neural networks. In The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval,
SIGIR ’18, page 95–104, New York, NY, USA, 2018. Association for Computing
Machinery.

6


	Abstract
	1 Introduction
	2 Related work
	2.1 Time series forecasting
	2.2 Sample quality evaluation

	3 Problem Formulation
	4 Our Method: DQGO
	4.1 Sample Quality Evaluation
	4.2 Sample Gradient Optimization

	5 Experiments
	5.1 Experimental Setup
	5.2 Comparison with removing-based and reordering-based methods
	5.3 Comparison with the state-of-the-art TSF models
	5.4 Immunity to low-quality samples

	6 Conclusion
	References

