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ABSTRACT
Recommender systems (RS) are central to the filtering and curation
of online content. These algorithms predict user ratings for unseen
items based on past preferences. Despite their importance, the
innate predictability of RS has received limited attention. This study
introduces data-driven metrics to measure the predictability of RS
based on the structural complexity of the user-item rating matrix.
A low predictability score indicates complex and unpredictable
user-item interactions, while a high predictability score reveals
less complex patterns with predictive potential. We propose two
strategies that use singular value decomposition (SVD) and matrix
factorization (MF) to measure structural complexity. By perturbing
the data and evaluating the prediction of the perturbed version, we
explore the structural consistency indicated by the SVD singular
vectors. The assumption is that a random perturbation of highly
structured data does not change its structure. Empirical results
show a high correlation between our metrics and the accuracy of
the best-performing prediction algorithms on real data sets.
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1 INTRODUCTION
As the amount of information and content available to users con-
tinues to explode, recommender systems play an essential role in
enhancing users’ experience in areas ranging from e-commerce and
entertainment to social media and personalized content delivery.
These systems are designed to balance the huge amount of content
available with the individual preferences of users to maximize the
interaction-utility ratio of the users.
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Among the various paradigms in recommendation systems, col-
laborative filtering (CF) stands out as a widely adopted approach
known for its effectiveness in delivering valuable and personal-
ized recommendations to users [17]. By leveraging the collective
wisdom of users’ preferences and behaviors, collaborative filtering
recommends items based on the similarity of users’ tastes and in-
teractions. Despite its practical success, much of the knowledge
surrounding collaborative filtering remains largely empirical, leav-
ing a gap in our comprehensive understanding of the underlying
characteristics of the filtering problem and the intricacies of this
specific approach.

Unraveling the inner workings of collaborative filtering is a
major challenge due to its inherent complexity. The interactions
between users and items within a recommendation system generate
large and intricate datasets, making extracting meaningful patterns
and underlying mechanisms difficult. To address these challenges,
researchers are increasingly turning to interdisciplinary approaches
that combine insights from data science, machine learning, and the
social sciences [4]. By integrating theories and methods from these
diverse fields, they aim to gain a more holistic understanding of how
users’ social interactions, psychology, and preferences influence
the collaborative filtering process.

In the context of collaborative filtering, data predictability is a
critical aspect of understanding data complexity. Understanding
the predictability of data in collaborative filtering recommender
systems can provide valuable insight into the effectiveness of the
algorithms. A low predictability score indicates the presence of
highly complex and unpredictable user-item interactions, which
could affect the accuracy and reliability of the recommendations
generated. On the other hand, a high predictability score indicates
that the system is effectively capturing the underlying patterns and
user preferences, resulting in more reliable and personalized recom-
mendations. While predictability has been extensively studied in
various domains [1, 6, 12], its application to collaborative filtering
recommender systems remains unexplored.

Our goal is to provide a data-driven metric to quantify the pre-
dictability of any instance of a recommender system (RS), defined
as the possible maximum precision of a prediction algorithm. Quan-
tifying the predictability of RS allows us to evaluate predictive
algorithms; estimate the extent to which the structure of the RS is
explicable; and monitor changes during the system’s evolution.

This article proposes two strategies to measure predictability
in collaborative filtering datasets. Each metric is comprehensively
defined and contrasted with the accuracy of well-known CF algo-
rithms to demonstrate its relationship to the predictability of the
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data. To validate their efficacy, we conducted tests using both artifi-
cial and real-world datasets, revealing that the metrics have a high
correlation with the accuracy of the best-performing algorithms.

The paper is structured as follows: In the Metrics section, we
present and justify the two metrics studied in this paper. The
Methodology section elaborates on the testing procedures employed
to assess these methods using real datasets. The Results section
showcases the correlations between the metrics and prediction
accuracy of CF algorithms. Finally, in the Discussion section, the
conclusions, limitations observed during the tests, and perspectives
for future work are discussed.

2 RELATEDWORK
To the best of our knowledge, this is the first study to explore
predictability and complexity measures in the context of RS. Yet,
prediction in RS can be seen as a specific case of link prediction
in graphs. Our metrics borrow ideas from previous work studying
structural properties in complex networks to reveal their intrinsic
predictability.

2.1 Predictability in complex networks
The work on network link prediction by [18] presents an entropy-
based metric for predictability in the context of network graphs.
They introduce a measure of structural entropy using a lossless
compression algorithm by [5] that converts the network structure
into a binary string, whose complexity can be computed using Shan-
non entropy. Their results using several real networks show a linear
relationship between the entropy measure and the performance of
the best link prediction algorithm for each dataset.

In a similar context, [12] presents another predictability metric
for network graphs. This method takes advantage of the represen-
tation of the graph as an adjacency matrix, which is symmetric and
binary. Assuming that structural consistency for networks under
small perturbations can be approximated by an eigenvalue change
of the adjacency matrix, they compute the eigendecomposition of
a perturbed matrix (where the matrix is the same as the original
but with a fraction of links missing) and estimate the structural
differences between the original matrix and the current one with
an eigenvalue perturbation.

Both of these recent studies cannot be directly applied to RS,
which are represented by user-item rating matrices that are non-
square, and weighted. Consequently, anymethod that aims to assess
the structural complexity of recommender systems must inherently
account for these properties. These methods are effective in scenar-
ios where binary values dominate the analysis, a situation charac-
terized by unweighted graph edges where the representation matrix
is also symmetric. In this work, we aim to measure these properties
on non-symmetric, non-square, non-binary matrices, which is the
general case for collaborative filtering RS representations.

2.2 Collaborative Filtering Algorithms
Typically, collaborative filtering algorithms are based on traditional
machine learning methods such as decision trees, rule-based meth-
ods, Bayes classifiers, regression models, support vector machines,
latent factor models, and neural networks [2]. Latent factor collab-
orative filtering is a popular technique for making personalized

recommendations that are based on the idea of representing users
and items as vectors in a latent space of lower dimensionality [10].
These latent factors are not directly observable but can be inferred
from the ratings or interactions between users and items. There are
many methods to learn the latent structure, such as non-negative
matrix factorization [11], support vector machines [21], probabilis-
tic matrix factorization [20], and more recently, deep neural net-
works [8].

2.3 Correlation between prediction
performance and dataset meta-features

In the context of RS predictability, a paper that has made a sig-
nificant contribution is that of McElfresh et al. [13]. In it, the au-
thors present a machine learning method for selecting the best-
performing RS prediction algorithm for a given dataset, based on
various meta-characteristics of the dataset. Such meta-features in-
clude, but are not limited to: overall mean ratings, Shannon’s en-
tropy, mean rating distribution, Gini coefficient, among others. They
test the algorithmic performance of algorithms belonging to five
families: SlopeOne, Co-Clustering, Matrix Factorization, RP3Beta,
and User KNN. For each of the aforementioned families, they de-
termine which of these meta-features best correlates with its per-
formance; the correlation results are based on plotting against 85
different datasets. Using these results, when given a new dataset,
the algorithm calculates its meta-features and provides the algo-
rithm that best correlates with the feature that obtained the highest
value.

Our work is closely related to the context of McElfresh et al’s
work. However, the goal of our work is different: while the use of
predictability in their study relates to the performance of specific
algorithms, our goal is to establish a relationship between a metric
and the best possible algorithm. Furthermore, our methods aim to
provide a principled metric that captures the structure of an RS
dataset, so that the causal relationship between the value of the
metric and optimal performance is robust to new datasets.

3 METRICS
For a recommender system, the main goal is to predict which items
a user is likely to be interested in based on their past interactions
with the system.Formally, given a set of users U and a set of items
I, a CF recommender system can be represented as a matrix 𝑀
of size |U| × |I|, where rows represent users, columns represent
items, and cells contain the ratings given by the interaction of
the user in the row with the item in the column. For most real-
world datasets, this model leaves the vast majority of cells empty,
since most users interact with only a handful of items. Our goal
is to derive a complexity measure for the matrix𝑀 that takes into
account the limited information about the interactions.

In this study, we introduce predictability metrics that aim to rank
recommender system datasets based on their degree of predictabil-
ity, ranging from easier to harder to predict. To achieve this, we
propose two main strategies that are based on the Singular Value
Decomposition (SVD) of a matrix.

To avoid potential confusion, we make a slight distinction be-
tween two applications of SVD in our work. The first is the exact
singular value decomposition of a matrix, which we will refer to as
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SVD. The second is the (truncated) approximate factorization of a
matrix done by least squares optimization, commonly used in CF
recommendation algorithms; we will refer to it as TSVD henceforth.

3.1 Analytical Structural Consistency (ASC)
Our approach is inspired by the notion of structural consistency
in graphs [12], which essentially performs a prediction from a
perturbed version of the training set using eigendecomposition.
Since eigendecomposition works only on square matrices, we adapt
the notion of structural consistency to work for RS non-square
matrices using singular value decomposition (SVD).

In the context of RS, structural consistency is based on the hy-
pothesis that if the corresponding bipartite graph is perturbed by a
permutation of its edges, and this perturbation does not significantly
alter its structural properties, then the graph is highly predictable.
Conversely, if the perturbation leads to substantial changes in the
internal structure, the original data is less predictable.

We explain howwe adapt the method provided by Lü et al [12] as
follows. First, we describe their consistency method for adjacency
matrices using matrix notation. Next, we describe our adaptation
and the technical differences that must be taken into account for it
to work.

3.1.1 Adjacencymatrix perturbation by diagonalization. Themethod
in Lü et al. [12] takes an adjacency matrix𝐴 and removes a fraction
𝑝 of its links, represented by the matrix Δ𝐴. The resulting matrix
with removed links, 𝐴𝑅 = 𝐴 − Δ𝐴, can be diagonalized since it is
symmetric. Its diagonalization can be written as

𝐴𝑅 = 𝑋𝐾𝑋𝑇 (1)
where 𝑋 is an orthogonal matrix that has 𝐴𝑅 ’s normalized eigen-
values as columns, and 𝐾 is the eigenvalue matrix, with its columns
sorted to keep consistency with 𝑋 . They define �̃� as a structural
perturbation of 𝐴, with the following formula:

�̃� = 𝐴𝑅 + 𝑋Δ𝐾𝑋𝑇 = 𝑋 (𝐾 + Δ𝐾)𝑋𝑇 (2)
where Δ𝐾 is the difference between 𝐴’s and 𝐴𝑅 ’s eigenvalue matri-
ces, and is approximated using

Diag(Δ𝐾) ≈ Diag(𝑋𝑇Δ𝐴𝑋 ) (3)
Finally, the matrix �̃� is used as a prediction for 𝐴. The obtained

root mean square error (RMSE) result from testing the prediction
is used as the predictability metric.

3.1.2 Structural perturbation by SVD. Next, we explain our adap-
tation of the method to define structural perturbations for the case
of SVD.

Let𝑀 be a rating matrix, where rows represent users, columns
represent items, and cells represent known ratings of the corre-
sponding users and items (and 0’s in the unknown ratings). We
define the following matrices in an analogous manner to what was
done with the adjacency matrix 𝐴.

Consider a matrix𝑀𝑃 that results from permuting a fraction 𝑝
(0 < 𝑝 < 1) of the known ratings present in matrix 𝑀 . Thus, the
original matrix𝑀 can be expressed as

𝑀 = 𝑀𝑃 + Δ𝑀 (4)

for an appropriate Δ𝑀 . The SVD of𝑀𝑃 is written as follows:

𝑀𝑃 = 𝑈 Σ𝑉𝑇 . (5)

We also define the matrices Δ𝑈 , Δ𝑉 , and ΔΣ such that

𝑀 = (𝑈 + Δ𝑈 ) (Σ + ΔΣ) (𝑉 + Δ𝑉 )𝑇 (6)

is a singular value decomposition of𝑀 . In this sense, Δ𝑈 , ΔΣ and
Δ𝑉 denote the difference between the SVD matrices present for𝑀
and𝑀𝑃 .

We define �̃� as a structural perturbation for𝑀 . That is, we make
an approximation of the matrix 𝑀 , denoted as �̃� and defined as
follows.

�̃� = 𝑀𝑃 +𝑈ΔΣ𝑉𝑇 = 𝑈 (Σ + ΔΣ)𝑉𝑇 (7)
Note that �̃� is similar to 𝑀 in its definition, but the former

does not take into account Δ𝑈 nor Δ𝑉 . The objective is to find
a value or approximation for ΔΣ, since the rest of the values can
be obtained from 𝑀𝑃 and its SVD. We cannot obtain the same
approximation as to what is done for Δ𝐾 , because the latter works
thanks to the original matrix being symmetric. What can be done is
to take advantage of the symmetry of the product between a matrix
and its transpose. Considering that, we multiply Equation (5) by its
transposed version to the left to obtain

(𝑀𝑃 )𝑇𝑀𝑃 = 𝑉 Σ𝑇𝑈𝑇𝑈 Σ𝑉𝑇 = 𝑉 (Σ𝑇 Σ)𝑉𝑇 . (8)
Where we used 𝑈𝑇𝑈 = 𝐼 , since𝑈 is orthogonal. Noticing that 𝑉 is
also orthogonal and that Σ𝑇 Σ is diagonal and square, the result to
the right is a diagonalization of the matrix (𝑀𝑃 )𝑇𝑀𝑃 . Also, because
of Σ being diagonal, the first Dim(Diag(Σ)) values of Σ𝑇 Σ are equal
to the squares of the values present in Diag(Σ) (the following, if
any, are equal to 0). The reasoning described in this paragraph is
commonly used to obtain an exact SVD for a matrix.

Let M := (𝑀𝑃 )𝑇𝑀𝑃 . We follow analogous steps as done with
matrix 𝐴 to reach the parallel to Equation (3):

Diag(Δ(Σ𝑇 Σ)) ≈ Diag(𝑉𝑇ΔM𝑉 ) (9)
where

Δ(Σ𝑇 Σ) = (Σ + ΔΣ)𝑇 (Σ + ΔΣ) − Σ𝑇 Σ (10)
and

ΔM = 𝑀𝑇𝑀 −M (11)
In particular, the result obtained in Equation (9) can be used as

an approximation in the point-to-point version of Equation (10),
which can be written as follows:

Δ(Σ𝑇 Σ)𝑖𝑖 = (Σ𝑖𝑖 + ΔΣ𝑖𝑖 )2 − Σ2𝑖𝑖 (12)
where 𝑖 is an index between 1 and Dim(Diag(Σ)). This equation
holds because both Σ and ΔΣ are diagonal. Clearing the value for
ΔΣ𝑖𝑖 , we obtain

ΔΣ𝑖𝑖 ≈
√︃
(Σ𝑇 Σ)𝑖𝑖 + Δ(Σ𝑇 Σ)𝑖𝑖 − Σ𝑖𝑖 (13)

where Δ(Σ𝑇 Σ) is the diagonal matrix representing the eigenvalue
perturbation for matrix (𝑀𝑃 )𝑇𝑀𝑃 .

Note that obtaining ΔΣ can also be done in terms of the matrix
𝑀𝑃 (𝑀𝑃 )𝑇 . The decision as to which is used in practice is made by
considering algorithmic efficiency.
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Once the matrix �̃� is obtained, we use it as a prediction for𝑀 .
The root mean square error (RMSE) result obtained by only testing
the values present on the perturbed cells is used as the predictability
metric.

3.2 Empirical Structural Consistency (ESC)
This metric is a simpler version of the ASCmethod, does not require
a closed-form approximation, and is less computationally expensive.
Roughly speaking, the structural perturbation here is taken as �̃� =

𝑀𝑃 , but we approximate its factorization using TSVD instead of its
exact value. The steps involved are described below:

(1) We define a fraction 0 < 𝑝𝑇 < 1.
(2) Given a rating matrix 𝑀 , we select a random set 𝑅𝑀 of its

ratings. The defined set has 𝑝𝑇 of the total known cells of𝑀 .
(3) We define the matrix 𝑀𝑃 , which is the result of randomly

permuting 𝑅𝑀 ’s ratings on𝑀 .
(4) We train an unbiased TSVD recommendation algorithm with

20 hidden attributes, using the permuted matrix𝑀𝑃 as the
training set.

(5) We predict the ratings from 𝑅𝑀 using the trained algorithm
from the previous step, and take the RMSE value.

(6) We iterate over the previous steps a fixed number of times
𝑛 and average the resulting RMSE values. This last result is
used as the predictability metric.

4 METHODOLOGY
In this section, we put through empirical testing the predictabil-
ity metrics. To this end, we conduct experiments on a representa-
tive sample of 100,000 rated interactions from each of the 12 real-
world datasets under study (see Table 1 for a description). These
experiments are designed to evaluate the relationships between the
predictability metric and the accuracy of the best-performing CF
predictive algorithms. The algorithms tested are the following:

• Non-negative Matrix Factorization (NMF), using 20 hidden
attributes.

• Biasedmatrix factorization (TSVD), using 20 hidden attributes.
• TSVD with implicit ratings (SVD++).
• K-Nearest Neighbors (KNN), defining a maximum of 5 neigh-
bors.

• KNN Means, defining a maximum of 5 neighbors.
• Slope-One algorithm.
• Co-clustering algorithm, using 5 clusters.

For each of the datasets, we train the algorithms on a random
selection of 50% of the interactions and then test them on the
remaining 50%. We compute the root mean square error (RMSE)
of the predictions and normalize them by dividing the result by
the rating range (e.g., if the scores range from 1 to 5, we divide the
corresponding RMSE by 4). This normalization is done to compare
two or more data sets that use different rating scales.

The best-performing algorithm with the lowest error is selected.
Table 1 shows and highlights these minima. We then compute the
predictability metrics for the data set; once a measure has been
computed for all eight data sets, we compute the Pearson and Spear-
man correlation coefficients between the minimum RMSE and the
metric. We do this for all of the predictability metrics.

To obtain the results using the ESCmethod, we consider 𝑝𝑇 = 0.1
and 𝑛 = 10. For the ASC method, we consider 𝑝 = 0.1.

Additionally, we perform predictability measurements on manu-
ally generated datasets designed to represent extreme cases with
distinct structural complexities. A common characteristic of all
generated datasets is that the rating resolution is five rating values,
and all possible ratings have the same frequency. Thus, simpler
metrics like those used in McElfresh et al. [13] do not capture the
differences between datasets because they rely on the distribution
of ratings and not the structure.

A simplified illustration of the generated sets is shown in Figure
1. There, we have ordered the generated sets in qualitative order of
structural complexity. In this sense, the set represented by figure 1a
is the easiest to predict in theory, given that each user only gives
one rating, while the one represented by figure 1e is arguably the
hardest to predict, due to its generation’s randomness. Each of the
generated matrices is of size 500 × 500; after the generation, we
extract a random 95% of the ratings, so that the studied data set is
incomplete (i.e. its resulting sparsity is 95%).

5 RESULTS
We present the plot of the real data in Figure 2. The correlation
coefficients are presented in table 2. The experiments with gener-
ated data are plotted in figure 3; their correlation coefficients are
presented in table 3.

5.1 Outcome for the real datasets
The ASC method shows the highest correlation values in Table
2, and both are above 0.9. This empirical evidence supports the
suitability of the method as a metric of predictability. Furthermore,
it underscores the viability of perturbation-based structural analy-
sis in recommender systems as a means of extracting meaningful
insights about the underlying data.

The ESC method shows a high Pearson correlation and also a
noticeable Spearman correlation. The fact that this method is highly
correlated means that the predictability of a CF dataset depends on
how much its structure is altered when a perturbation is applied to
it.

5.2 The case of synthetic data
To test the robustness of the metrics, we have generated matri-
ces that have the same global statistical properties but different
structural properties. Specifically, we are interested in cases where
the ratings have a fixed frequency distribution, but are ordered
differently in the user-rating interaction matrix.

The results for the manually generated sets are shown in Figure
3. The correlation coefficients for each metric against the best algo-
rithmic performance are shown in Table 3. The plot shows that only
the ESC metric succeeds in correlating properly with the prediction
error. Conversely, ASC shows roughly the same predictability value
for different prediction errors.

Although ASC seems to contain enough complexity to capture
the structure of the data set, the manually generated experiments
show otherwise. One explanation for this could be that the approx-
imation term 𝑈ΔΣ𝑉𝑇 in Equation (7) is either too small or overfit-
ting, and therefore unable to capture a broader sense of structure in
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Dataset # Ratings # Users # Items NMF TSVD SVD++ KNN KNNMeans SlopeOne Co-Clustering
Amazon Arts, Crafts & Sewing 100,000 91,134 1,129 0.307 0.286 0.290 0.303 0.305 0.306 0.306

Amazon Books 100,000 86,893 411 0.277 0.266 0.269 0.275 0.274 0.275 0.276
Amazon CDs & Vinyl 100,000 76,929 2,897 0.239 0.2216 0.2224 0.235 0.235 0.237 0.235
Amazon Digital Music 100,000 68,916 5,210 0.199 0.185 0.184 0.193 0.189 0.190 0.193
Amazon Gift Cards 100,000 92,029 502 0.230 0.223 0.225 0.227 0.226 0.226 0.236

Amazon Industrial and Scientific 100,000 93,815 1,192 0.301 0.287 0.289 0.298 0.300 0.300 0.300
Amazon Magazine Subscriptions 89,688 72,097 2,428 0.348 0.339 0.342 0.350 0.347 0.348 0.347

Amazon Video Games 100,000 71,998 2,531 0.327 0.300 0.303 0.322 0.328 0.332 0.324
MovieLens 100,000 669 3,264 0.248 0.235 0.233 0.258 0.253 0.238 0.246

Netflix Prize 1 100,000 81,490 30 0.290 0.262 0.271 0.280 0.282 0.287 0.289
Netflix Prize 2 100,000 73,461 23 0.283 0.255 0.260 0.269 0.272 0.277 0.283

Steam Australian Reviews 59,305 25,458 3,682 0.366 0.302 0.301 0.330 0.355 0.361 0.351
Table 1: Dataset sample details and RMSE values obtained by implementing the four CF algorithms: Non-Negative Matrix
Factorization (NMF), Singular Value Decomposition (TSVD), Singular Value Decomposition Plus-plus (SVD++), Simple K-Nearest
Neighbors (KNN), K-Nearest Neighbors with Means (KNNMeans), Slope One, and Co-Clustering. Minimum RMSE values are
highlighted in bold; these values are used as a reference to test the prediction measures shown in this paper. Amazon datasets
are provided by [15]; MovieLens dataset by [7]; Netflix datasets are obtained from [14]; and Steam dataset by [9, 16, 19].

(a) (b) (c) (d) (e)

Figure 1: Graphical examples of the generated cases studied for the predictability metrics. The five dataset types have the same
numerical rating distribution, but they vary in the relative distribution among agents. Figure 1a has all users rating items with
one value; figure 1b has users that rate at most two values, and items can be set into two groups according to the ratings given
to them; figure 1c has users rating using consecutive ratings (5 is taken as consecutive to 1); figure 1d does something similar,
but with a wider variety of users; and figure 1e has all ratings randomly and independently assigned. Intuitively, a suitable
measurement for structural complexity 𝑐 should satisfy 𝑐 (1𝑎) < 𝑐 (1𝑏) ≈ 𝑐 (1𝑐) < 𝑐 (1𝑑) < 𝑐 (1𝑒). The matrices used to obtain the
results in figure 3 follow this basic structure, but are of size 500 × 500.

the points being evaluated. Note that when ΔΣ = 0, the computed
value is a root mean square difference between a subset of values
and a permutation of them. This operation is only dependent on
rating frequencies and therefore does not take into account any
underlying structure.

6 DISCUSSION
6.1 Conclusions and Implications
In this article, we have presented two complexity metrics that
prove valuable in determining the predictability of RS datasets.
We have addressed the importance of considering the intrinsic
structural properties of the data as a proxy for predictability. Their
usefulness lies in a data-driven understanding of the limitations
of CF recommendation algorithms, as well as having numerical
values to contrast when training an algorithm. Of the two metrics
analyzed, ESC is the most promising for general use cases, as its
correlation coefficient against prediction errors is high for both
real and generated data, thus demonstrating high robustness in
measuring predictability.

We believe that our method is novel in three respects. First, the
application of a principled measure of predictability in recommen-
dation systems is novel. Second, from a technical point of view,
the extension of structural consistency [12] to non-binary and non-
symmetric matrices involved non-trivial analytical calculations to
compute the approximation of the perturbed matrix using SVD
decomposition (instead of eigenvalue decomposition); Third, we
extended the perturbation method from removing links to chang-
ing the weights of the links; and we proposed a new empirical
method based on structural consistency that is computationally
more efficient and doesn’t rely on first-order approximations.

Furthermore, we are confident that our proposed complexity
metrics could be integrated into existing RS to improve their perfor-
mance. First, the metrics can be used to evaluate the performance of
an algorithm by comparing it to the proposed metrics, which quan-
tify the intrinsic optimal performance that any algorithm could
achieve. Second, the metrics can be used to capture changes as the
system evolves. Previous work measuring the detrimental effects
of feedback loops uses metrics such as homogenization and popu-
larity bias. We argue that our proposed metric based on structural
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Figure 2: Graphical correlation for real datasets between pre-
dictability metrics and the lowest RMSE from the tested rec-
ommendation techniques. Each point is obtained by iterating
10 times over each metric and algorithm and taking its mean;
the error bars are taken from the standard deviation of the
aforementioned iterations on each axis. Both metrics show
a strong linear correlation with algorithmic performance,
although ESC presents problems with one dataset (Steam
reviews).

Metric Pearson Spearman
ASC 0.968 0.821
ESC 0.924 0.825

Table 2: Correlation coefficients using real data, for each
of the predictability metrics, against the minimum RMSE
values obtained by the recommendation algorithms. The top
correlations are highlighted in bold.

consistency captures both metrics because homogenization and
popularity bias reduce the complexity of the system (making it
more predictable), and can provide new insights into the effects of
feedback loops [3].

6.2 Limitations and Future Work
The experimental results on real data show a significant correlation
for the ASCmethod. This suggests that structural complexity can be
both analyzed via perturbations and used as a strategy to measure
predictability. The main problems identified are technical, mainly:
the possibility of a computation in which the factorization values
may be non-real numbers (see that Equation (13) contains a square
root of an approximation); and the computational complexity re-
quired to compute large datasets (identified as O(max ({𝑚,𝑛})3)

Figure 3: Graphical correlation for generated data between
predictability measurements and the lowest RMSE from rec-
ommendation techniques, taking into account 5% of their
ratings as known. Each point is obtained by iterating 10 times
over eachmetric and algorithm and taking itsmean; the error
bars are taken from the standard deviation of the aforemen-
tioned iterations on each axis. Only the ESC metric has an
identifiable correlation with the prediction errors for these
cases.

for an𝑚 × 𝑛 matrix), which makes it difficult to scale. Future work
will address the cases where these problems are present.

Metric Pearson Spearman
ASC 0.257 0.300
ESC 0.905 0.900

Table 3: Pearson and Spearman correlation coefficients for
generated data between the prediction error and the studied
predictability metrics, when contrasted against generated
data. Only ESC shows a significant correlation.

As the only metric that correlates with the error of the generated
cases, the ESCmethod seemsmost likely to serve as a viable strategy
for measuring predictability. Its results raise the question of the
reason for its robustness. We formulate the hypothesis that the
perturbation emphasizes the structural noise present in the data set;
consequently, the approximation performed by the TSVD algorithm
further emphasizes the structural noise. This hypothesis will be
addressed in future work.
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