
Noise Robust Graph Learning under Feature-Dependent
Graph-Noise

Yeonjun In
yeonjun.in@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Kanghoon Yoon
ykhoon08@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Sukwon Yun
swyun@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Kibum Kim
kb.kim@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Sungchul Kim
sukim@adobe.com
Adobe Research
San Jose, CA, USA

Chanyoung Park∗
cy.park@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

ABSTRACT
In practical situations, node features often contain noise from vari-
ous sources, leading to severe performance degradation of GNNs.
While several methods aim to improve robustness, they often make
an unrealistic assumption that the noise in node features is in-
dependent of the graph structure and node labels, limiting their
applicability in real-world scenarios. To this end, we newly present
amore realistic noise scenario called feature-dependent graph-noise
(FDGN), where noisy node features may entail both structure and
label noise. Furthermore, we propose a deep generative model that
directly captures the causal relationships among variables in the
DGP of FDGN. We establish a tractable and feasible learning ob-
jective based on variational inference and thoroughly discuss the
instantiations of model components corresponding to the derived
learning objective. Our proposed method, PRINGLE, outperforms
baselines on widely used benchmark datasets and our newly intro-
duced real-world graph datasets that simulate FDGN in e-commerce
systems.

CCS CONCEPTS
•Computingmethodologies→Neural networks; • Information
systems→ Data mining.

KEYWORDS
graph noise, noise robust graph learning, generative graph learning

ACM Reference Format:
Yeonjun In, Kanghoon Yoon, Sukwon Yun, Kibum Kim, Sungchul Kim,
and Chanyoung Park. 2024. Noise Robust Graph Learning under Feature-
Dependent Graph-Noise. In Companion Proceedings of the ACM Web Confer-
ence 2024 (WWW ’24 Companion), May 13–17, 2024, Singapore, Singapore.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3589335.3651916

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0172-6/24/05.
https://doi.org/10.1145/3589335.3651916

Noisy edges Community 1Edges Community 2

Bob

(a) Clean graph

TomAlice

(c) FDGN

Bob

TomAlice

fake
profile

(b) CGN

fake
profile

TomAlice

Bob

Figure 1: Social network examples.

𝝐 𝑿 𝒁𝒀

𝑨 𝒀𝒁𝑨

(a) DGP of CGN

𝝐 𝑿 𝒁𝒀

𝑨 𝒀𝒁𝑨

(b) DGP of FDGN

Observable Latent

Figure 2: A directed graphical model indicating a DGP of (a)
CGN, and (b) FDGN.

1 INTRODUCTION
In the majority of real-world scenarios, node features frequently
exhibit noise due to various factors, leading to the creation of inaccu-
rate graph representations [12, 19]. For instance, in social networks,
users may create fake profiles or posting, resulting in noisy node
features. Similarly, in product co-purchase networks found on e-
commerce systems, node features can be contaminated by fake
reviews. Recent studies have revealed the vulnerability of GNNs to
such scenarios, highlighting the necessity to design robust GNN
models against noisy node features. To this end, various methods
have been proposed to make a huge success in terms of model
robustness [12, 19].

While such existing robust GNN models have proven effective,
we argue that their practicality is restricted by an unrealistic as-
sumption regarding graph noise: they assume that the noise in node
features is independent of the graph structure or node labels. For exam-
ple, in the conventional graph noise (CGN) assumption in terms of
node features (Fig. 1(b)), Bob’s fake profile does not influence other
nodes, which is also explained by the data generating process (DGP)
of CGN (See Fig. 2(a)) in which no causal relationships exist among
the noisy node features 𝑋 , graph structure 𝐴, and node labels 𝑌 .

However, in reality (See Fig. 1(c)), other users may make connec-
tions with Bob based on his fake profile (i.e., structure noise), which

https://doi.org/10.1145/3589335.3651916
https://doi.org/10.1145/3589335.3651916

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Yeonjun In et al.

may also eventually change their community (i.e., label noise), and
such causal relationships among 𝑋 , 𝐴, and 𝑌 (i.e., 𝐴← 𝑋 , 𝑌 ← 𝑋 ,
and 𝑌 ← 𝐴) are depicted in Fig. 2(b).

This noise scenario is commonly encountered in various real-
world applications. Consider another real-world scenario, such as
a product co-purchase network on an e-commerce platform, where
nodes represent products and edges represent the co-purchase rela-
tionship between products. In this case, fake reviews on products
written by a fraudster would make other users purchase irrelevant
products, which adds irrelevant edges between products (i.e., struc-
ture noise). Consequently, this would make the automated product
category labeling system to inaccurately annotate product cate-
gories (i.e., label noise), as it relies on the node features and the
graph structure, both of which are contaminated.

These examples demonstrate that, in reality,noisy node features
may entail both structure and label noise. However, we observe
that existing robust GNNmodels indeed fail to generalize effectively
in such a noise scenario due to their inadequate assumption on the
data generation process (Sec 3.1).

In this work, to reflect such a realistic scenario in graph learning,
we newly introduce feature-dependent graph-noise (FDGN) and
propose a principled noisy graph learning framework (PRINGLE),
which models the DGP of a more realistic FDGN assumption. We
first illustrate the DGP of FDGN as shown in Fig. 2(b). More pre-
cisely, we introduce three observable variables (i.e., node features
𝑋 , graph structure 𝐴, and node labels 𝑌) and three latent variables
(i.e., noise incurring variable 𝜖 , latent clean graph structure 𝑍𝐴 , and
latent clean node labels 𝑍𝑌), while defining causal relationships
among these variables to represent the data generation process
of FDGN. We then devise a deep generative model that directly
captures the causal relationships among the variables in the DGP
of FDGN, and derive a tractable and feasible learning objective
based on variational inference. It is worth noting that although
the main focus of this paper is on the node feature noise and its
influence across the graph, our proposed robust graph learning
framework is capable of generalizing not only to feature-dependent
graph noise (FDGN), but also to independent structure/feature/label
noise that is also prevalent in real-world applications. This implies
that PRINGLE has a wider range of applicability than existing
robust GNN models. Moreover, to conduct a rigorous evaluation
of PRINGLE, we conduct evaluations not only on existing bench-
mark datasets, but also on our newly introduced real-world graph
datasets that simulate FDGNwithin e-commerce systems, providing
a valuable alternative to synthetic settings.

In summary, the main contributions of our paper are three-fold:

• We investigate limitations of the conventional graph noise as-
sumption in terms of node features, and introduce a more re-
alistic graph noise scenario, feature-dependent graph-noise
(FDGN). To the best of our knowledge, this is the first attempt
to understand the data generation process in graph domain that
mimics the noise scenario in real-world.
• We propose the principled noisy graph learning framework
(PRINGLE) addressing FDGNbymodeling its DGP. PRINGLE out-
performs state-of-the-art baselines in node classification and
link prediction tasks under various scenarios including feature-
dependent graph-noise and independent structure/feature/label
noise.

• In addition to existing benchmark datasets in which noise is syn-
thetically generated, we further introduce novel graph bench-
mark datasets that simulate FDGN within e-commerce systems,
which is expected to foster practical research in noise-robust
graph learning.

2 RELATEDWORK
The objective of noise-robust graph learning is to train GNNmodels
when the input graph data exhibits one or more of the following
types of noise: 1) node feature noise, 2) graph structure noise, and/or
3) node label noise. The majority of existing approaches focus
primarily on graphs containing only a single type of noise.
Feature noise-robust graph learning. To address the noisy node
features, various approaches including adversarial training [26]
and test-time graph transformation [12], have been proposed. Ad-
ditionally, recent studies have highlighted the significance of fully
leveraging structural information. AirGNN [19] proposed a novel
message passing mechanism that identifies the nodes with noisy
features and learns node-wise adaptive coefficients that balance
the feature aggregation and use of their own noisy features. The
identification process is guided by the intuition that nodes with
noisy features tend to have dissimilar features within their local
neighborhoods. In summary, this approach tackles the noisy node
features while assuming that the structure of the input graph is
noise-free.
Structure noise-robust graph learning. To address the noisy
graph structure, various approaches including robust message pass-
ing scheme [15] and graph structure learning [11] have been pro-
posed. Among them, a representative approach is based on the
graph structure learning (GSL), which aims to learn a refined graph
structure from a given graph. Specifically, RSGNN [6] aims to train
a graph structure learner, which is composed of an MLP encoder
and a regularizer for enhancing feature-smoothness, which encour-
ages the nodes with similar features to be connected in the refined
structure. STABLE [17] aims at acquiring robust node represen-
tations by roughly refining the given graph by removing easily
detectable noisy edges, typically those connecting nodes with low
feature-similarity, after which node representations are learned in
an unsupervised manner. Finally, based on these representations,
a kNN graph is constructed to serve as the refined structure. In
summary, these methods tackle the noisy graph structure while
assuming that node features are noise-free.
Label noise-robust graph learning. There are numerous studies
that address the noisy labels on non-graph data [16, 27]. However,
since they are not directly applicable for graph data [5], recent stud-
ies investigated the label noise-robust graph learning methods. The
key idea of NRGNN [5] is to correct the predictions of unlabeled
nodes affected by information propagation from falsely labeled
nodes. To do so, NRGNN learns a new graph structure where two
nodes with similar features are connected, based on the assumption
that two nodes are more likely to have the same label if they have
similar features. This strategy mitigates the information propaga-
tion from falsely labeled nodes. RTGNN [24] identifies clean labeled
samples from noisy labeled ones based on the small-loss criteria
and leverages pseudo-labeling to supplement the labeled nodes.
However, nodes with noisy features or structures would yield a
large-loss even if their labels do not contain any noise, which results
in inaccuracies in the selection of clean labeled samples. Therefore,

Noise Robust Graph Learning under Feature-Dependent Graph-Noise WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore.

these methods tackle the noisy node labels while assuming that
both node features and graph structure are noise-free.
Generative graph learning. Apart from the noise-robust graph
learning methods, several studies adopted deep generative model-
ing to infer latent graph data [7, 14, 20]. Most recently, WSGNN
[14] uses a probabilistic generative approach and variational in-
ference to infer the latent graph structure and node labels. Graph-
GLOW [28] aims at inferring the latent graph structure that can
be transferred to the out-of-domain by utilizing a probabilistic gen-
erative approach and variational inference. However, they assume
noise-free graphs, making it less effective in handling various noise
scenarios commonly found in real-world applications.

In summary, each of the aforementioned methods assumes the
completeness of at least one of the data sources, i.e., node features,
graph structures, or node labels. In contrast, our proposed method
is constructed under a more realistic FDGN assumption, where
noise in node features may result in structural and label noise. This
fundamental difference liberates the proposed method from the
limited assumptions of existing methods.

3 FEATURE-DEPENDENT GRAPH-NOISE
Definition. In this section, we define a realistic graph noise as-
sumption, i.e., FDGN, and its DGP. Specifically, we assume that the
graph containing FDGN is generated according to the graphical
model in Fig. 2(b). We first introduce each variable in the graphi-
cal model, and then explain each relationship between variables
through two real-world applications where FDGN is prevalent: so-
cial networks (i.e., user-user graph) and co-purchase networks (i.e.,
product-product graph) within e-commerce systems.

In the graphical model in Fig. 2(b), 𝑋 represents the node fea-
tures, which may contain noisy node features; 𝑌 represents the
observed node labels, which may contain noisy labels;𝐴 represents
the observed edges between two nodes, which may contain noisy
edges; 𝜖 represents the environment variable that causes the noise;
𝑍𝑌 represents the latent clean node labels; 𝑍𝐴 represents the latent
clean graph structure that contains all potential connections be-
tween nodes. We provide explanations for each relationship in the
graphical model of FDGN shown in Fig. 2(b):
• 𝑋 ← (𝜖, 𝑍𝑌): 𝜖 and 𝑍𝑌 are causes of 𝑋 . In social networks, users
create their profiles and postings (i.e., 𝑋) regarding their true
communities or interests (i.e., 𝑍𝑌). However, if users decide to
display fake profiles for some reason (i.e., 𝜖), 𝜖 is a cause of the
noisy node features 𝑋 . In co-purchase networks, the reviews and
descriptions of products (i.e., 𝑋) are written regarding their true
categories (i.e., 𝑍𝑌). However, if a fraudster (i.e., 𝜖) writes fake
reviews on products, 𝜖 is a cause of the noisy node features (i.e.,𝑋).
• 𝐴← (𝑍𝐴, 𝑋): 𝑍𝐴 and 𝑋 are causes of 𝐴. In social networks, the
follow relationship among users (i.e., 𝐴) are made based on their
latent relationships (i.e., 𝑍𝐴). However, if a user creates a fake
profile (i.e., 𝑋), some irrelevant users may follow the user based
on his/her fake profile, which leads to noisy edges (i.e., 𝐴). In co-
purchase networks, the co-purchase relationship among products
(i.e., 𝐴) are made based on their true relevance (i.e., 𝑍𝐴). However,
fake reviews on products written by a fraudster (i.e., 𝑋) would
make other users purchase irrelevant products, which leads to
noisy edges (i.e., 𝐴).
• 𝐴← 𝜖: To provide a broader scope, we also posit that 𝜖 is a po-
tential cause of 𝐴. This extension is well-founded, as real-world

A
cc

. (
%

)

(a) (b) (c)

60

70

80

Clean + RFN + FDGN Clean + RSN + FDGN

70

80

Clean + RLN + FDGN
60

70

80

AirGNN
PRINGLE PRINGLE

STABLE
RSGNN NRGNN

RTGNN
PRINGLE

60

Figure 3: Node classification performance of baselines and
PRINGLE on Cora dataset. Here, + RFN, + RSN, and + RLN
indicate injecting the random feature noise, random struc-
ture noise, and random label noise into the original graph,
respectively.

applications often exhibit graph structure noise originating from
various sources in addition to the feature-dependent noise [8, 18].
• 𝑌 ← (𝑍𝑌 , 𝑋,𝐴): 𝑍𝑌 , 𝑋 , and 𝐴 are causes of 𝑌 . In social networks,
the true communities (or interests) of users (i.e., 𝑍𝑌) are leveraged
to promote products to targeted users within a community [21].
To detect the communities, both node features and graph struc-
tures are utilized. However, if a user has noisy node features (i.e.,
𝑋) or noisy edges (i.e., 𝐴), the user may be assigned to a wrong
community (or interest), which leads to noisy labels (i.e., 𝑌). In co-
purchase networks, machine learning-based automated labeling
techniques are widely used in e-commerce systems to label the
true categories of products (i.e., 𝑍𝑌) since new products are con-
tinuously released. However, the automated labeling systems may
become inaccurate due to noisy node features (i.e., 𝑋) and noisy
graph structures (i.e., 𝐴), which leads to noisy node labels (i.e., 𝑌).
For simplicity, we assume that 𝜖 is not a cause of 𝑌 . This as-

sumption aligns with practical scenarios in real-world applications,
where an instance is more likely to be mislabeled due to confus-
ing or noisy features rather than arbitrary sources, i.e., instance-
dependent label-noise [2, 27]. In other words, label noise in graphs
is predominantly caused by confusing or noisy features and graph
structure (i.e., 𝑌 ← (𝑋,𝐴)), rather than an arbitrary external factor
(i.e., 𝑌 ↚ 𝜖).

3.1 Preliminary Analysis on FDGN
We conduct an analysis to examine how well existing robust GNN
models generalize to FDGN. We generate three types of noise: ran-
dom feature noise [19], random structure noise [17], and random
label noise [5, 24], following the convention of the existing studies.
As baselines, we consider (a) AirGNN as a feature noise-robust
graph learning method, (b) RSGNN and STABLE as structure noise-
robust graph learning methods, and (c) NRGNN and RTGNN as
label noise-robust graph learning methods.

We observe that while existing noise-robust graph learningmeth-
ods perform well under the random feature noise (i.e., + RFN in Fig.
3(a)), structure noise (+ RSN in Fig. 3(b)), and label noise (+ RLN in
Fig. 3(c)), their performance significantly drops under FDGN (i.e.,
+ FDGN in Fig. 3). In contrast, our proposed method (PRINGLE)
demonstrates competitive results under the random noise scenar-
ios, while notably outperforming the baselines under FDGN. This
points to a key distinction – existing noise-robust graph learning
methods struggle to generalize to FDGN due to their limited as-
sumptions regarding the graph noise. Specifically, as summarized
in Sec. 2, each category of methods assumes at least one of the data
sources is noise-free: node features, graph structures, or node labels.
Nevertheless, the causal relationships among 𝑋 , 𝐴, and 𝑌 within
the data generation process of FDGN gives rise to scenarios involv-
ing concurrent feature, structure, and label noise. Consequently,
existing robust GNN models fall short of effectively generalizing to

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Yeonjun In et al.

FDGN, as they overlook such underlying relationships among noise
types, leading to model designs assuming the completeness of at
least one data source. Conversely, PRINGLE directly captures the
underlying relationships by modeling the DGP of FDGN, resulting
in superior generalization to FDGN.

4 PROPOSED METHOD: PRINGLE
In this section, we propose a principled noisy graph learning frame-
work (PRINGLE) to tackle a more realistic noise scenario, FDGN.
It is essential to highlight that under FDGN, noisy node features
entail both structure and label noise, resulting in a graph that does
not contain any noise-free data sources, i.e., a graph with noisy 𝑋 ,
noisy𝐴, and noisy 𝑌 . This point presents a non-trivial challenge for
the existing noise-robust graph learning methods to tackle FDGN,
as they assume the completeness of at least one data source. To
address this challenge, we design a deep generative model that
directly models the DGP of FDGN, thereby capturing the causal
relationships among the variables that introduce noise. First, we
derive the Evidence Lower Bound (ELBO) for the observed data
log-likelihood 𝑃 (𝑋,𝐴,𝑌) based on the graphical model of FDGN
(Section 4.2). Subsequently, we discuss model instantiations for the
model components corresponding to the derived terms, including
implementation details (Section 4.3). It is essential to highlight that
our approach can handle both node classification and link predic-
tion tasks, making it versatile and applicable in various situations.

4.1 Problem Statement
Notations We have an undirected and unweighted graph G =

⟨V, E⟩ where V = {𝑣1, ..., 𝑣𝑁 } represents the set of nodes and
E ∈ V ×V indicates the set of edges. Each node 𝑣𝑖 has the node
features X𝑖 ∈ R𝐹 and node labels Y𝑖 ∈ {0, 1}𝐶 , where 𝐹 is the num-
ber of features for each node and𝐶 indicates the number of classes.
We represent the observed graph structure using the adjacency
matrix A ∈ R𝑁×𝑁 , where A𝑖 𝑗 = 1 if there is an edge connecting
nodes 𝑣𝑖 and 𝑣 𝑗 , and A𝑖 𝑗 = 0 otherwise.
Tasks: node classification and link prediction In the node
classification task, we assume the semi-supervised setting where
only a portion of nodes are labeled (i.e., V𝐿). Our objective is to
predict the labels of unlabeled nodes (i.e., V𝑈) by inferring the
latent clean node label 𝑍𝑌 . In the link prediction task, our goal is to
predict reliable links based on partially observed edges by inferring
the latent clean graph structure 𝑍𝐴 . It is important to note that,
according to the FDGN assumption, the observed node features,
graph structure, and node labels may contain noise.

4.2 Model Formulation
We commence by modeling joint distribution 𝑃 (𝑋,𝐴,𝑌). We as-
sume that the joint distribution 𝑃 (𝑋,𝐴,𝑌) is differentiable nearly
everywhere regarding both 𝜃 and the latent variables (𝜖, 𝑍𝐴, 𝑍𝑌).
Note that the generative parameter 𝜃 serves as the decoder network
that models the distribution 𝑃 (𝑋,𝐴,𝑌). The joint distribution of
𝑃 (𝑋,𝐴,𝑌) can be represented as:

𝑝𝜃 (𝑋,𝐴,𝑌) =
∫
𝜖

∫
𝑍𝐴

∫
𝑍𝑌

𝑝𝜃 (𝑋,𝐴,𝑌, 𝜖, 𝑍𝐴, 𝑍𝑌)𝑑𝜖𝑑𝑍𝐴𝑑𝑍𝑌 . (1)

However, computing this evidence integral is either intractable
to calculate in closed form or requires exponential time. As the
evidence integral is intractable for computation, calculating the

conditional distribution of latent variables 𝑝𝜃 (𝜖, 𝑍𝐴, 𝑍𝑌 |𝑋,𝐴,𝑌) is
also intractable: 𝑝𝜃 (𝜖, 𝑍𝐴, 𝑍𝑌 |𝑋,𝐴,𝑌) =

𝑝𝜃 (𝑋,𝐴,𝑌,𝜖,𝑍𝐴,𝑍𝑌)
𝑝𝜃 (𝑋,𝐴,𝑌) .

To infer the latent variables, we introduce an inference network
𝜙 to model the variational distribution 𝑞𝜙 (𝜖, 𝑍𝐴, 𝑍𝑌 |𝑋,𝐴,𝑌), which
serves as an approximation to the posterior 𝑝𝜃 (𝜖, 𝑍𝐴, 𝑍𝑌 |𝑋,𝐴,𝑌).
To put it more concretely, the posterior distribution can be decom-
posed into three distributions determined by trainable parameters
𝜙1, 𝜙2, and 𝜙3. Based on the observed conditional independence
relationships 1, we decompose 𝑞𝜙 (𝜖, 𝑍𝐴, 𝑍𝑌 |𝑋,𝐴,𝑌) as follows:
𝑞𝜙 (𝜖, 𝑍𝐴, 𝑍𝑌 |𝑋,𝐴,𝑌) = 𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴, 𝜖)𝑞𝜙2 (𝜖 |𝑋,𝐴,𝑍𝑌)𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴,𝑌) .

(2)
For simplicity, we introduce two additional assumptions. First,

when the node features 𝑋 and observed graph structure 𝐴 are
given, latent clean graph structure 𝑍𝐴 is conditionally indepen-
dent from the noise-incurring variable 𝜖 , i.e., 𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴, 𝜖) =

𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴). Second, when 𝑋 and 𝐴 are given, latent clean labels
𝑍𝑌 is conditionally independent from the observed node labels 𝑌 ,
i.e., 𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴,𝑌) = 𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴). This approximation, known
as the mean-field method, is a prevalent technique utilized in varia-
tional inference-based methods [14, 20]. As a result, we can simplify
Eqn. 2 as follows:
𝑞𝜙 (𝜖, 𝑍𝐴, 𝑍𝑌 |𝑋,𝐴,𝑌) = 𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴)𝑞𝜙2 (𝜖 |𝑋,𝐴,𝑍𝑌)𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴) .

(3)
To jointly optimize the parameter 𝜙 and 𝜃 , we adopt the varia-

tional inference framework [3, 27] to optimize the Evidence Lower-
BOund (ELBO) of the marginal likelihood for observed data, rather
than optimizing the marginal likelihood directly. Specifically, we
derive the negative ELBO, i.e., LELBO, as follows:
LELBO = −E𝑍𝐴∼𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴)E𝜖∼𝑞𝜙2 (𝜖 |𝑋,𝐴,𝑍𝑌)

[
log

(
𝑝𝜃1 (𝐴|𝑋, 𝜖, 𝑍𝐴)

)]
− E𝜖∼𝑞𝜙2 (𝜖 |𝑋,𝐴,𝑍𝑌)E𝑍𝑌∼𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴)

[
log

(
𝑝𝜃2 (𝑋 |𝜖, 𝑍𝑌)

)]
− E𝑍𝑌∼𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴)

[
log

(
𝑝𝜃3 (𝑌 |𝑋,𝐴, 𝑍𝑌)

)]
+ 𝑘𝑙 (𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴) | |𝑝 (𝑍𝑌)) + 𝑘𝑙 (𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴) | |𝑝 (𝑍𝐴))
+ E𝑍𝑌∼𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴)

[
𝑘𝑙 (𝑞𝜙2 (𝜖 |𝑋,𝐴, 𝑍𝑌) | |𝑝 (𝜖))

]
. (4)

where 𝑘𝑙 (·| |·) denotes KL divergence. The encoders 𝜙1, 𝜙2, and 𝜙3
infer three latent variables, while 𝜃1, 𝜃2, and 𝜃3 are decoder net-
works used for generating three observable variables. Our objective
is to find the optimal values of 𝜙 = {𝜙1, 𝜙2, 𝜙3} and 𝜃 = {𝜃1, 𝜃2, 𝜃3}
that minimize the value of LELBO, expressed as argmin𝜃,𝜙 LELBO.
By doing so, the encoders and decoders are trained to directly cap-
ture the causal relationships among the variables that introduce
noise. Consequently, it promotes the accurate inference of the la-
tent clean node label 𝑍𝑌 and latent clean graph structure 𝑍𝐴 to
effectively perform the node classification and link prediction tasks
even in the presence of FDGN.

4.3 Model Instantiations
In this section, we present the details of the practical implementa-
tion and optimization of PRINGLE based on the learning objective,
LELBO. The overall architecture of PRINGLE are provided in Fig 4.
The key challenge of the instantiation is how to accurately infer the
latent variables 𝑍𝐴 , 𝑍𝑌 , and 𝜖 in the presence of noisy 𝑋 , 𝐴, and 𝑌 .
To alleviate the challenge, we design the robust inference encoders
(Fig 4(a)) and generative decoders (Fig 4(b)) with the corresponding

1We observe the following conditional independence relationships in Fig. 2(b): (1)
𝑍𝐴 ⊥ 𝑌 |𝑋,𝐴, 𝜖 , (2) 𝑍𝐴 ⊥ 𝑍𝑌 |𝐴,𝑋, 𝜖 , (3) 𝜖 ⊥ 𝑌 |𝑍𝑌 , 𝑋,𝐴.

Noise Robust Graph Learning under Feature-Dependent Graph-Noise WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore.

FDGN

𝒁𝑨

𝒁𝒀

(𝑋, 𝐴)

(𝑋, 𝐴)

(𝑋, 𝐴)

𝝐𝑿

𝝐𝑨
0.8

0.9

0.2

0.1
0.2

0.7 0.9

0.8Clean

likelihood

class1 class2 clean edges noisy edgesunlabeled + clean labeled - noisy labeled noisy feat.

(a) Inference Encoders

Structure Infer.

𝑞𝜙1
(𝑍𝐴|𝑋, 𝐴)

Label Infer.

𝑞𝜙3
(𝑍𝑌|𝑋, 𝐴)

Noise Env.

Infer.

𝑞𝜙2
(𝜖|𝑋, 𝐴, 𝑍𝑌)

Noisy Graph (𝑿, 𝑨, 𝒀)

+
-

-

+

Latent Clean Graph

inferred edges

𝓛
𝐡
𝐨
𝐦

(b) Generative Decoders

𝒁𝑨
Structure

Generation

𝑝𝜃1(𝐴|𝑋, 𝜖𝐴, 𝑍𝐴)

Feature Gen.

𝑝𝜃2(𝑋|𝜖𝑋 , 𝑍𝑌)

𝒁𝒀

𝝐𝑿

𝑿

Label Gen.

𝑝𝜃3(𝑌|𝑋, 𝐴, 𝑍𝑌)

-

𝒀

Feature

similarity

1,0.3

1,0.3

0.6,0.5

1,0.7
0.9,0.6

0.9,0.2

0.8,0.2

Regularized

Edge Prediction

Smoothed

Edge Label

𝑿
Prediction Label

Prediction Label

𝒀𝐝𝐞𝐜

ෝ𝒑𝒊𝒋
𝒓𝒆𝒈

ෝ𝒑𝒊𝒋
𝒆𝒍

+
-+

-

Edge

prediction

𝓛𝐫𝐞𝐜−𝐞𝐝𝐠𝐞

𝓛𝐫𝐞𝐜−𝐟𝐞𝐚𝐭

𝓛𝐜𝐥𝐬−𝐝𝐞𝐜

𝝐𝑨

𝑿

𝑿
𝑨
𝒁𝒀

0.8

0.9

0.2

0.1
0.2

0.7 0.9

0.8

Clean likelihood

𝓝(𝟎, 𝟏) 𝓛𝒑

𝒀𝓛
𝐜𝐥
𝐬−

𝐞
𝐧
𝐜

In
fe

rr
ed

𝒁
𝑨
,𝒁

𝒀
,𝝐

𝑨
,𝝐

𝑿

Figure 4: Overall architecture of PRINGLE. (a) With the noisy graph (𝑋,𝐴,𝑌) as inputs, we design the inference encoders (𝜙1,
𝜙2 and 𝜙3) and regularizers (Lhom, Lcls-enc, and Lp) to effectively infer the latent variables 𝑍𝐴, 𝑍𝑌 , 𝜖𝐴, and 𝜖𝑋 . (b) Leveraging
the inferred latent variables, we formulate the generative decoders (𝜃1, 𝜃2, and 𝜃3) and reconstruction loss functions (Lrec-edge,
Lrec-feat, and Lcls-dec) to capture the causal relationships that generate noise in the graph.

regularizers (Fig 4(a)) and reconstruction losses (Fig 4(b)). Conse-
quently, the encoders would be able to accurately infer the latent
variables by capturing the causal relationships among the variables
that introduce noise.
4.3.1 Modeling Inference Encoder. In this section, we describe the
implementations of the encoders, i.e., 𝜙1, 𝜙3, and 𝜙2, that aim to
infer the latent variables, i.e., 𝑍𝐴 , 𝑍𝑌 , and 𝜖 , respectively.
Modeling 𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴). The objective of modeling 𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴)
is to accurately infer the latent clean graph structure 𝑍𝐴 that en-
hances the message passing of a GNN model and the performance
of link prediction. To this end, we design the encoder 𝜙1 as a graph
structure learner to accurately infer the latent graph structure 𝑍𝐴 .
More specifically, we use a GCN encoder to acquire determinis-
tic node embeddings, i.e., Z = GCN𝜙1 (X,A) ∈ R𝑁×𝑑1 , where 𝑑1
is the dimension of node embedding. To obtain the latent graph
Â = {𝑎𝑖 𝑗 }𝑁×𝑁 , we sample from 𝑎𝑖 𝑗 ∼ Bern(𝑝𝑖 𝑗) where the esti-
mated parameter 𝑝𝑖 𝑗 is computed as follows: 𝑝𝑖 𝑗 = 𝜌 (𝑠 (Z𝑖 ,Z𝑗)),
where 𝑠 (·, ·) is a cosine similarity function and 𝜌 is the ReLU acti-
vation function.

To further promote an accurate inference of 𝑍𝐴 , we inject our
prior knowledge, i.e., 𝑝 (𝑍𝐴), into the inference procedure: the latent
graph structure predominantly consists of assortative edges that
have the potential to enhance feature propagation within GNNs
[28]. In recent studies [4, 6], the 𝛾-hop subgraph similarity has
served as a potent metric for identifying assortative edges. Hence,
we aim to regularize 𝑍𝐴 to align with our prior knowledge by
minimizing the KL divergence between the latent graph structure
Â and prior graph structure Ap = {𝑎p

𝑖 𝑗
}𝑁×𝑁 , where 𝑎p

𝑖 𝑗
is sampled

from a Bernoulli distribution with a probability as given by the
𝛾-hop subgraph similarity. Such regularization leads the estimated
probability 𝑝𝑖 𝑗 between two nodes to increase if they exhibit a high
subgraph similarity. It is important to note that this regularization
is equivalent to minimizing 𝑘𝑙 (𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴) | |𝑝 (𝑍𝐴)) in Eqn. 4.

However, computing 𝑝𝑖 𝑗 in every epoch is impractical for large
graphs, i.e., 𝑂 (𝑁 2). To mitigate the issue, we pre-define a can-
didate graph that consists of the observed edge set E and a 𝑘-
NN graph based on the 𝛾-hop subgraph similarity. We denote

the set of edges in the 𝑘-NN graphs as E𝛾
𝑘
. Then, we compute

the 𝑝𝑖 𝑗 values of the edges in a candidate graph, i.e., E𝛾
𝑘
∪ E, in-

stead of all edges in {(𝑖, 𝑗) |𝑖 ∈ V, 𝑗 ∈ V}, to estimate the la-
tent graph structure denoted as Â. It is important to highlight
that obtaining E𝛾

𝑘
is carried out offline before model training, thus

incurring no additional computational overhead during training.
This implementation technique achieves a similar effect as min-
imizing 𝑘𝑙 (𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴) | |𝑝 (𝑍𝐴)) while significantly addressing
computational complexity from 𝑂 (𝑁 2) to 𝑂 (|E𝛾

𝑘
∪ E|), where

𝑁 2 ≫ |E𝛾
𝑘
∪ E|.

Modeling 𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴). The objective of modeling 𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴)
is to accurately infer the latent clean node label 𝑍𝑌 that enhances
the performance of node classification with the help of the in-
ferred 𝑍𝐴 . To this end, we instantiate the encoder 𝜙3 as a GCN
classifier that deterministically outputs the probability of the latent
label 𝑍𝑌 . Specifically, we infer 𝑍𝑌 through Ŷ = GCN𝜙3 (X, Â) ∈
R𝑁×𝐶 because Â contains not only A, but also rich structural in-
formation that is missing in A, which helps enhance the inference
of 𝑍𝑌 . We introduce the node label classification loss Lcls-enc =∑
𝑖∈V𝐿 CE(Ŷ𝑖 ,Y𝑖), where CE is the cross entropy loss.
To further enhance the quality of inference of 𝑍𝑌 , we inject

our prior knowledge, i.e., 𝑝 (𝑍𝑌), into the inference procedure: two
nodes connected on the latent graph structure 𝑍𝐴 are expected to
have an identical latent labels 𝑍𝑌 , known as class homophily [23].
Hence, we aim to regularize𝑍𝑌 to alignwith our prior knowledge by
minimizing the KL divergence between the probability predictions
Ŷ of each node and its first order neighbors in the estimated latent
structure Â. The implemented loss function is given by: Lhom =∑
𝑖∈V

∑
𝑗 ∈N𝑖 𝑝𝑖 𝑗 ·𝑘𝑙 (Ŷ𝑗 | |Ŷ𝑖)∑

𝑗 ∈N𝑖 𝑝𝑖 𝑗
, where N𝑖 denotes the set of first-order

neighbors of node 𝑣𝑖 within the estimated latent structure Â. It is
worth noting that this regularization is equivalent to minimizing
𝑘𝑙 (𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴) | |𝑝 (𝑍𝑌)) in Eqn. 4.

Modeling 𝑞𝜙2 (𝜖 |𝑋,𝐴, 𝑍𝑌). To model 𝑞𝜙2 (𝜖 |𝑋,𝐴, 𝑍𝑌), we simplify
𝑞𝜙2 (𝜖 |𝑋,𝐴, 𝑍𝑌) into 𝑞𝜙21 (𝜖𝑋 |𝑋,𝑍𝑌) and 𝑞𝜙22 (𝜖𝐴 |𝑋,𝐴), where 𝜖𝑋

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Yeonjun In et al.

and 𝜖𝐴 are independent variables that incur the feature and struc-
ture noise, respectively.

The objective of modeling 𝑞𝜙22 (𝜖𝐴 |𝑋,𝐴) is to accurately infer
the structure noise incurring variable 𝜖𝐴 that determines whether
each edge is clean or noisy. To this end, we regard 𝜖𝐴 as a set of
scores indicating the likelihood of each observed edge being clean
or noisy. To estimate the likelihood, we draw inspiration from an
early-learning phenomenon [1]. This phenomenon indicates that
deep neural networks have a tendency to initially focus on learning
from training data with clean labels during an “early learning”
phase. In other words, during the early learning phase, deep neural
networks are trained to yield small loss values on the clean labeled
data. Building upon this well-established observation, we compute
the set of link prediction losses using MSE on the observed edges E
as {(1 − 𝑝𝑒𝑙

𝑖 𝑗
)2 | (𝑖, 𝑗) ∈ E}, where 𝑝𝑒𝑙

𝑖 𝑗
represents the 𝑝𝑖 𝑗 value at the

final epoch during early-learning phase. Therefore, an edge with
high 𝑝𝑒𝑙

𝑖 𝑗
value can be considered as a clean edge, and we instantiate

𝜖𝐴 as {𝑝𝑒𝑙
𝑖 𝑗
| (𝑖, 𝑗) ∈ E}. However, the loss-based criteria 𝑝𝑒𝑙

𝑖 𝑗
may

introduce uncertainty in identifying clean edges as it relies on a
single training point’s value. In other words, 𝑞𝜙22 (𝜖𝐴 |𝑋,𝐴) follows
an unknown distribution with high variance. To reduce uncertainty
of the inferred 𝜖𝐴 , we regularize 𝑞𝜙22 (𝜖𝐴 |𝑋,𝐴) to follow the same
distribution with low variance, i.e., 𝑝 (𝜖𝐴), which is equivalent to
reducing 𝑘𝑙 (𝑞𝜙22 (𝜖𝐴 |𝑋,𝐴) | |𝑝 (𝜖𝐴)). To implement it, we adopt an
exponential moving average (EMA) technique: 𝑝𝑒𝑙

𝑖 𝑗
← 𝜉𝑝𝑒𝑙

𝑖 𝑗
+ (1 −

𝜉)𝑝𝑐
𝑖 𝑗
, where 𝑝𝑐

𝑖 𝑗
indicates the value of 𝑝𝑖 𝑗 at the current training

point, and 𝜉 indicates the decaying hyperparameter fixed to 0.9.
Please note that we scale 𝑝𝑒𝑙

𝑖 𝑗
with a minimum value of 0.9 and a

maximum value of 1.
For the encoder 𝜙21, we use an MLP that takes CONCAT(𝑋,𝑍𝑌)

as an input and outputs 𝜖𝑋 . Additionally, we regularize 𝑝 (𝜖𝑋) to
follow the standard multivariate normal distribution, which means
that a closed form solution of 𝑘𝑙 (𝑞𝜙21 (𝜖𝑋 |𝑋,𝑍𝑌) | |𝑝 (𝜖𝑋)) can be
obtained as Lp = − 1

2
∑𝑑2

𝑗=1 (1+ log𝜎
2
𝑗
− 𝜇2

𝑗
−𝜎2

𝑗
), where 𝑑2 is the di-

mension of a 𝜖𝑋 [13]. Note that these two regularization techniques
are equivalent to minimizing E𝑍𝑌∼𝑞𝜙3

[
𝑘𝑙 (𝑞𝜙2 (𝜖 |𝑋,𝐴, 𝑍𝑌) | |𝑝 (𝜖))

]
in Eqn. 4.

4.3.2 Modeling Generative Decoder. In this section, we describe the
implementations of the decoders, i.e., 𝜃1, 𝜃2, and 𝜃3, that generate
the observable variables, i.e., 𝐴, 𝑋 , and 𝑌 , respectively.

Modeling 𝑝𝜃1 (𝐴|𝑋, 𝜖, 𝑍𝐴). The probability 𝑝 (𝐴|𝑋, 𝜖, 𝑍𝐴) means
the likelihood of how well the noisy edge 𝐴 is reconstructed from
the latent graph structure 𝑍𝐴 along with 𝜖 and 𝑋 . Hence, we de-
sign the decoder 𝜃1 as an edge reconstruction model. We aim to
maximize log

(
𝑝𝜃1 (𝐴|𝑋, 𝜖, 𝑍𝐴)

)
(or equivalently minimize the nega-

tive log likelihood) to discover the latent graph structure 𝑍𝐴 from
which the noisy edge 𝐴 is reconstructed given noise sources, i.e.,
𝑋 and 𝜖 . It is important to note that such a learning objective is
equivalent to minimizing −E𝑍𝐴∼𝑞𝜙1E𝜖∼𝑞𝜙2

[
log

(
𝑝𝜃1 (𝐴|𝑋, 𝜖, 𝑍𝐴)

)]
in Eqn. 4, which is implemented as an edge reconstruction loss
forcing the estimated latent structure Â to assign greater weights
to clean edges and reduce the influence of noisy edges, which is
defined as Lrec-edge:

Lrec-edge =
𝑁

| E | + | E− |
©«

∑︁
(𝑖,𝑗) ∈E

(𝑝𝑟𝑒𝑔
𝑖 𝑗
− 𝑝𝑒𝑙𝑖 𝑗)2 +

∑︁
(𝑖,𝑗) ∈E−

(𝑝𝑖 𝑗 − 0)2ª®¬ ,
(5)

where E and E− denote the positive edges and randomly sampled
negative edges, respectively. To compute Lrec-edge, we employ reg-
ularizations on both the predictions (i.e., 𝑝𝑟𝑒𝑔

𝑖 𝑗
) and labels (i.e., 𝑝𝑒𝑙

𝑖 𝑗
)

since the observed graph structure𝐴 contains noisy edges incurred
by 𝑋 and 𝜖 , which introduce inaccurate supervision.

More precisely, the regularized prediction 𝑝
𝑟𝑒𝑔

𝑖 𝑗
is defined as:

𝑝
𝑟𝑒𝑔

𝑖 𝑗
= 𝜃1𝑝𝑖 𝑗 + (1 − 𝜃1)𝑠 (X𝑖 ,X𝑗). Note that the feature similarity

𝑠 (X𝑖 ,X𝑗) is considered in the prediction of positive edges. The main
idea is to penalize 𝑝𝑖 𝑗 when 𝑠 (X𝑖 ,X𝑗) is high, as the edge between
𝑣𝑖 and 𝑣 𝑗 is potentially noisy due to the influence of noisy𝑋 . For the
regularized labels, we utilize the inferred 𝜖𝐴 , i.e., 𝑝𝑒𝑙𝑖 𝑗 ∈ [0.9, 1]. In
other words, when an edge is regarded as noisy (i.e., with a low 𝑝𝑒𝑙

𝑖 𝑗
),

its label is close to 0.9, while an edge considered clean (i.e., with a
high 𝑝𝑒𝑙

𝑖 𝑗
) has a label close to 1. This approach achieves a similar

effect to label smoothing, enhancing the model robustness in the
presence of noisy supervision. Note that 𝜃1 is a hyperparameter,
and the 0.9 in the label regularization is selected following [25].
Modeling 𝑝𝜃2 (𝑋 |𝜖, 𝑍𝑌)). The probability 𝑝 (𝑋 |𝜖, 𝑍𝑌) indicates how
well the noisy node feature 𝑋 is reconstructed from the latent clean
label 𝑍𝑌 along with 𝜖 . Hence, we design the decoder 𝜃2 as a feature
reconstruction model and aim to maximize log

(
𝑝𝜃2 (𝑋 |𝜖, 𝑍𝑌)

)
) (or

equivalently minimize the negative log likelihood). To do so, the de-
coder needs to rely on the information contained in𝑍𝑌 , which essen-
tially encourages the value of𝑍𝑌 to bemeaningful for the prediction
process, i.e., generating 𝑋 . It is worth noting that such learning ob-
jective is equivalent tominimizing−E𝜖∼𝑞𝜙2E𝑍𝑌∼𝑞𝜙3

[
log

(
𝑝𝜃2 (𝑋 |𝜖, 𝑍𝑌)

)]
in Eqn. 4, which is implented as a feature reconstruction loss
Lrec-feat, where the decoder 𝜃2 is composed of an MLP that takes
CONCAT(𝜖𝑋 , 𝑍𝑌) as an input and outputs reconstructed node fea-
tures. Note that the reparametrization trick [13] is used for sampling
𝜖𝑋 that follows the standard normal distribution.
Modeling 𝑝𝜃3 (𝑌 |𝑋,𝐴, 𝑍𝑌). The probability 𝑝 (𝑌 |𝑋,𝐴, 𝑍𝑌) repre-
sents the transition relationship from the latent clean label 𝑍𝑌
to the noisy label 𝑌 of an instance, i.e., how the label noise was
generated [27]. For this reason, maximizing log

(
𝑝𝜃3 (𝑌 |𝑋,𝐴, 𝑍𝑌)

)
(or equivalently minimizing the negative log likelihood) would let
us discover the latent true label 𝑍𝑌 from which the noisy label
𝑌 is generated given an instance, i.e., 𝑋 and 𝐴. Hence, we aim to
maximize the log likelihood, which is implemented as minimiz-
ing a node classification loss Lcls-dec, i.e., the cross entropy loss.
Specifically, the decoder 𝜃3 is composed of a GCN classifier that
takes 𝐴 and CONCAT(𝑋,𝑍𝑌) as inputs, and outputs the predic-
tion of 𝑌 , i.e., Ŷdec = GCN𝜃3 (X,A, Ŷ) ∈ R𝑁×𝐶 . It is important to
note that such a learning objective is equivalent to minimizing
−E𝑍𝑌∼𝑞𝜙3

[
log

(
𝑝𝜃3 (𝑌 |𝑋,𝐴, 𝑍𝑌)

)]
in Eqn. 4.

4.3.3 Model Training. The overall learning objective can bewritten
as follows and PRINGLE is trained to minimize the Lfinal:
Lfinal = Lcls-enc+𝜆1Lrec-edge+𝜆2Lhom+𝜆3 (Lrec-feat+Lcls-dec+Lp),

(6)
where 𝜆1, 𝜆2, and 𝜆3 are the balancing coefficients.

Noise Robust Graph Learning under Feature-Dependent Graph-Noise WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore.

Table 1: Node classification performance under synthetic feature-dependent graph-noise (FDGN).

Dataset Setting WSGNN GraphGLOW AirGNN ProGNN RSGNN STABLE EvenNet NRGNN RTGNN PRINGLE

Cora

Clean 86.2±0.1 85.2±0.7 85.0±0.2 85.3±0.4 86.2±0.5 86.1±0.2 86.2±0.0 86.2±0.2 86.1±0.2 86.2±0.7
FDGN-10% 80.7±0.3 79.7±0.2 79.7±0.5 79.6±0.7 81.9±0.3 82.2±0.7 80.7±0.7 81.0±0.5 81.8±0.3 82.9±0.6
FDGN-30% 70.0±0.6 71.6±0.5 71.5±0.8 74.5±0.1 71.9±0.5 74.3±0.3 65.2±1.7 73.5±0.8 72.6±1.5 78.2±0.3
FDGN-50% 55.9±1.1 59.6±0.1 56.2±0.8 66.4±0.4 59.9±0.5 62.8±2.4 47.1±1.8 61.9±1.4 60.9±0.4 69.7±0.6

Citeseer

Clean 76.6±0.6 76.5±1.0 71.5±0.2 72.6±0.5 75.8±0.4 74.6±0.6 76.4±0.5 75.0±1.3 76.1±0.4 77.3±0.6
FDGN-10% 72.8±0.8 71.4±0.8 66.2±0.7 67.5±0.6 73.3±0.5 71.5±0.3 71.1±0.4 71.9±0.3 73.2±0.2 74.3±0.9
FDGN-30% 63.3±0.7 60.6±0.2 58.0±0.4 61.0±0.2 63.9±0.5 62.5±1.4 61.2±0.6 62.5±0.7 64.2±1.9 65.6±0.6
FDGN-50% 53.4±0.6 48.8±0.6 50.0±0.6 53.3±0.2 55.3±0.4 54.7±1.7 47.2±1.1 52.6±0.9 54.2±1.8 59.0±1.8

Photo

Clean 92.9±0.3 94.2±0.4 93.5±0.1 90.1±0.2 93.6±0.8 93.4±0.1 94.5±0.4 90.3±1.7 91.3±0.6 94.8±0.3
FDGN-10% 83.9±1.8 92.1±0.8 87.3±0.9 84.3±0.1 92.1±0.2 92.2±0.1 92.6±0.0 84.3±1.3 89.4±0.5 93.2±0.2
FDGN-30% 51.9±6.8 88.4±0.2 67.8±4.3 74.7±0.2 86.6±1.0 88.0±1.0 89.6±0.2 69.0±2.2 86.4±0.5 90.5±0.4
FDGN-50% 31.9±5.6 85.4±0.6 57.8±0.7 48.9±0.5 75.6±2.6 80.2±1.8 84.6±0.4 57.5±1.8 79.2±0.3 87.6±0.2

Comp

Clean 83.1±3.1 91.3±0.9 83.4±1.2 83.9±0.8 91.1±0.1 90.2±0.2 90.1±0.2 87.5±1.0 87.3±1.0 92.2±0.0
FDGN-10% 75.0±1.2 88.0±0.7 76.8±1.8 72.0±0.2 88.1±0.7 85.9±0.5 87.6±0.7 85.7±0.9 85.9±0.1 89.8±0.2
FDGN-30% 48.5±5.8 84.9±0.4 59.2±0.9 66.9±0.8 81.7±0.2 80.4±1.0 84.8±0.5 74.8±3.5 77.0±1.5 86.9±0.3
FDGN-50% 39.6±4.0 80.1±0.5 44.1±1.4 43.3±0.3 73.9±2.3 68.8±1.3 77.5±1.9 65.3±3.2 69.4±0.3 82.2±0.4

Table 2: Node classification performance un-
der real-world FDGN.

Auto Garden

Methods Clean + FDGN Clean + FDGN

WSGNN 71.8±4.3 57.7±1.3 87.4±0.2 77.6±0.8
GraphGLOW 77.9±1.2 59.4±0.8 88.5±0.9 78.1±1.5

AirGNN 69.5±0.8 53.9±0.1 78.3±1.5 66.1±1.7
ProGNN 63.2±0.2 48.6±0.3 78.7±0.1 73.0±0.4
RSGNN 69.5±0.4 56.8±0.9 83.3±1.2 76.2±0.5
STABLE 71.6±0.9 57.5±0.2 84.2±0.4 77.2±3.3
EvenNet 73.4±0.5 57.1±2.1 85.7±0.5 75.6±2.4
NRGNN 74.3±0.8 55.8±1.0 87.7±0.4 76.1±0.2
RTGNN 76.4±0.2 59.6±0.8 87.8±0.2 76.0±0.6

PRINGLE 79.3±0.2 61.4±0.4 88.7±0.3 80.2±0.8

Table 3: Link prediction performance under
real-world FDGN.

Auto Garden

Methods Clean + FDGN Clean + FDGN

WSGNN 81.8±0.1 69.1±0.6 84.7±0.2 84.6±0.7
GraphGLOW 86.2±0.3 74.8±0.2 90.2±0.5 90.1±0.4

AirGNN 60.2±0.2 57.9±0.4 62.0±0.1 58.2±0.5
ProGNN 74.8±0.3 56.7±0.5 83.5±0.6 83.3±0.5
RSGNN 87.2±0.8 65.0±0.2 91.2±0.4 91.2±0.5
STABLE 78.6±0.1 57.3±0.1 85.2±0.2 85.0±0.1
EvenNet 86.8±0.1 70.5±0.2 89.2±0.3 90.0±0.7
NRGNN 76.6±1.3 47.5±1.7 87.0±0.9 58.6±4.5
RTGNN 84.4±0.1 72.2±0.2 90.4±0.3 90.4±0.2

PRINGLE 88.2±0.3 73.6±0.6 92.6±0.2 92.4±0.4

5 EXPERIMENTS
Datasets. We evaluate PRINGLE and baselines on four com-
monly used benchmark datasets (i.e., Cora, Citeseer, Photo, and
Computers) and two newly introduced datasets (i.e., Auto and
Garden) based on Amazon review data [9, 22] to mimic FDGN on
e-commerce systems.

Experimental Details. We evaluated PRINGLE in both node
classification and link prediction tasks, comparing it with noise-
robust graph learning and generative graph learning methods. For
a thorough evaluation, we create synthetic and real-world FDGN
settings. We also account for independent structure/feature/label
noise that are also prevalent in real-world applications, following
[17, 19, 24]. Further details about the baselines, evaluation protocol,
and implementation details can be found in Appendix A.1, A.2, and
A.3, respectively.

5.1 Quantitative Results
5.1.1 Under Synthetic Feature-Dependent Graph-Noise. We first
evaluate PRINGLE under synthetic FDGN settings. Table 1 shows
that PRINGLE consistently outperforms all baselines in FDGN sce-
narios, especially when noise levels are high. This superiority is
attributed to the fact that PRINGLE captures the causal relation-
ships involved in the DGP of FDGN, while the baselines overlook
such relationships, leading to their model designs assuming the
completeness of at least one data source. Additionally, PRINGLE per-
forms well even in clean graph settings. We attribute this to the

accurate inference of 𝜖𝐴 , which is utilized as the label regularization
in calculating Lrec-edge. Specifically, in Fig 6(a) in Sec 5.2.2, we ob-
serve that the 𝑝𝑒𝑙

𝑖 𝑗
values estimated from the clean graph tend to be

close to 1, while those from the graph with FDGN are considerably
smaller. Recall that the high value of 𝑝𝑒𝑙

𝑖 𝑗
indicates the model regards

the edge (𝑖, 𝑗) as a clean edge. This suggests that PRINGLE has the
capability to adapt its model learning to the level of noise present
in the input graph, resulting in superior performance on both clean
and noisy graphs.
5.1.2 Under Real-world Feature-Dependent Graph-Noise. To inves-
tigate the robustness of PRINGLE under real-world noise scenarios,
we newly design two benchmark graph datasets, i.e., Auto and
Garden, where the node label is the product category, the node
feature is bag-of-words representation of product reviews, and the
edges indicate the co-purchase relationship between two products
by the same user. To the best of our knowledge, this is the first work
proposing new datasets for evaluating the noise-robust graph learn-
ing under realistic noise scenarios that are plausible in a real-world
e-commerce system containing fraudsters. In Table 2 and 3, we ob-
serve that PRINGLE outperforms the baselines under FDGN caused
by malicious actions of fraudsters on both the node classification
and link prediction tasks. This indicates that PRINGLE works well
not only under artificially generated noise, but also under noise
scenarios that are plausible in real-world applications.
5.1.3 Under Independent Feature/Structure/Label Noise. We test
howwell PRINGLE handles independent noise in features, structure,
and labels. See Appendix B.1 for details.

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Yeonjun In et al.

𝝐 𝑿 𝒁𝒀

𝑨 𝒀𝒁𝑨

(c) Case 3

𝝐 𝑿 𝒁𝒀

𝑨 𝒀𝒁𝑨

(b) Case 2

𝝐 𝑿 𝒁𝒀

𝑨 𝒀𝒁𝑨

(a) Case 1

Figure 5: Graphical
models of DGPs de-
rived from FDGN.

Table 4: Ablation studies regarding various DGPs in Fig 5. In Case
3, the causal relationship 𝑌 ← (𝑋,𝐴) is removed from the DGP of
FDGN (See Fig 2(b)). In Case 2, 𝐴← 𝑋 is additionally removed. In
Case 1, 𝐴← 𝜖 is additionally removed, which is equivalent to the
DGP of CGN (See Fig 2(a)). Cora and Citeseer datasets are used to
evaluate the node classification performance.

Dataset Setting (a) Case 1 (b) Case 2 (c) Case 3 PRINGLE

Cora

Clean 84.6±0.4 84.8±0.4 86.2±0.2 86.2±0.7
FDGN-10% 77.4±0.3 77.3±0.3 83.2±0.3 82.9±0.6
FDGN-30% 68.3±0.4 68.5±0.2 77.3±0.4 78.2±0.3
FDGN-50% 55.2±0.2 56.1±0.3 68.7±0.3 69.7±0.6

Citeseer

Clean 76.7±0.9 76.8±0.8 76.5±0.9 77.3±0.6
FDGN-10% 69.5±0.3 69.5±0.4 73.2±0.1 74.3±0.9
FDGN-30% 57.2±1.1 57.7±0.5 65.5±0.7 65.6±0.6
FDGN-50% 49.2±0.5 48.7±0.2 57.6±2.5 59.0±1.8

0.00 0.25 0.50 0.75 1.00
pel

ij value
0

10

De
ns

ity

(a) pel
ij Comparison

Clean
FDGN 50%

0.2 0.4 0.6 0.8 1.0
pij value

0

5

10

De
ns

ity

(b) pij Comparison
Clean Edges
Noisy Edges

Figure 6: (a) Distribution
of 𝑝𝑒𝑙

𝑖 𝑗
values of clean and

FDGN-50%. (b) Distribution
of 𝑝𝑖 𝑗 values of clean and
noisy edges under FDGN-
50%. Dashed lines are aver-
ages. Cora dataset is used.

5.2 Model Analyses
5.2.1 Ablation Studies. To emphasize the importance of directly
capturing the causal relationships among variables in the DGP of
FDGN, i.e., 𝑌 ← (𝑋,𝐴), 𝐴 ← 𝑋 , and 𝐴 ← 𝜖 , we remove them
one by one from the graphical model of FDGN (See Fig 2(b), and
then design deep generative models based on the DGPs in a similar
manner to PRINGLE. The graphical models of the derived DGPs
are illustrated in Fig 5. In Table 4, we observe that as more causal
relationships are removed from the DGP of FDGN, the node classi-
fication performance decreases. Below, we offer explanations for
this observation from the perspective of model derivation.

1) When removing the causal relationships 𝑌 ← (𝑋,𝐴), i.e.,
Fig 5(c), the loss term −E𝑍𝑌∼𝑞𝜙3

[
log

(
𝑝𝜃3 (𝑌 |𝑋,𝐴, 𝑍𝑌)

)]
can be sim-

plified to −E𝑍𝑌∼𝑞𝜙3
[
log

(
𝑝𝜃3 (𝑌 |𝑍𝑌)

)]
. This simplification hinders

the accurate modeling of the label transition relationship from𝑍𝑌 to
the noisy label 𝑌 , resulting in a degradation of model performance
under FDGN.

2)Additionally, when eliminating the causal relationship𝐴← 𝑋 ,
i.e., Fig 5(b), the inference of 𝑍𝐴 and 𝑍𝑌 is simplified as follows:
𝑞𝜙1 (𝑍𝐴 |𝑋,𝐴) to 𝑞𝜙1 (𝑍𝐴 |𝐴) and 𝑞𝜙3 (𝑍𝑌 |𝑋,𝐴) to 𝑞𝜙3 (𝑍𝑌 |𝑋). Fur-
thermore, the loss term −E𝑍𝐴∼𝑞𝜙1E𝜖∼𝑞𝜙2

[
log

(
𝑝𝜃1 (𝐴|𝑋, 𝜖, 𝑍𝐴)

)]
is

also simplified to −E𝑍𝐴∼𝑞𝜙1E𝜖∼𝑞𝜙2
[
log

(
𝑝𝜃1 (𝐴|𝜖, 𝑍𝐴)

)]
. These sim-

plifications significantly hinder the accurate inference of 𝑍𝐴 and
𝑍𝑌 , resulting in a notable performance degradation.

3) Furthermore, when removing the causal relationship 𝐴← 𝜖 ,
i.e., Fig 5(a), the loss term −E𝑍𝐴∼𝑞𝜙1E𝜖∼𝑞𝜙2

[
log

(
𝑝𝜃1 (𝐴|𝜖, 𝑍𝐴)

)]
is

simplified to −E𝑍𝐴∼𝑞𝜙1E𝜖∼𝑞𝜙2
[
log

(
𝑝𝜃1 (𝐴|𝑍𝐴)

)]
. This simplifica-

tion hinders the robustness of the inferred 𝑍𝐴 , since the simplified
loss excludes label regularization from the model training process,
ultimately resulting in performance degradation.
5.2.2 Analysis of the inferred 𝑍𝐴 and 𝜖𝐴 . In this subsection, we
qualitatively analyze how well PRINGLE infers the latent variable
𝜖𝐴 and 𝑍𝐴 . In Fig 6(a), we conducted an analysis of the inference of
𝜖𝐴 by comparing the distribution of 𝑝𝑒𝑙

𝑖 𝑗
values estimated during the

training of PRINGLE on clean and noisy graphs (FDGN-50%). We
observe that 𝑝𝑒𝑙

𝑖 𝑗
values estimated from the clean graph tend to be

close to 1, while those from the graph with FDGN are considerably
smaller. This observation suggests that the inference of 𝜖𝐴 was

accurate, as the high values of 𝑝𝑒𝑙
𝑖 𝑗
indicate that themodel recognizes

the edge (𝑖, 𝑗) as a clean edge.
In Fig 6(b), we analyze the inference of 𝑍𝐴 by comparing the dis-

tribution of 𝑝𝑖 𝑗 values, which constitute the estimated latent graph
structure Â, between noisy edges and the original clean edges. It is
evident that the estimated edge probabilities 𝑝𝑖 𝑗 for noisy edges are
predominantly assigned smaller values, while those for clean edges
tend to be assigned larger values. This observation illustrates that
PRINGLE effectively mitigates the impact of noisy edges during
the message-passing process, thereby enhancing its robustness in
the presence of noisy graph structure. This achievement can be
attributed to the label regularization effect achieved through the
accurate inference of 𝜖𝐴 . Specifically, as the observed graph struc-
ture contains noisy edges, the inaccurate supervision for Lrec-edge
impedes the distinction between noisy edges and the original clean
edges in terms of edge probability values 𝑝𝑖 𝑗 . However, the label
regularization technique proves crucial for alleviating this issue,
benefitting from the accurate inference of 𝜖𝐴 .

6 CONCLUSION
In this paper, we discover practical limitations of conventional
graph noise in terms of node features, i.e., the noise in node features
is independent of the graph structure or node label. To mitigate limi-
tations of the conventional graph noise assumption, we newly intro-
duce a more realistic graph noise scenario called feature-dependent
graph-noise (FDGN), and present a deep generative model that
effectively captures the causal relationships among variables in
the DGP of FDGN. Our proposed method, PRINGLE, consistently
outperforms baselines in both node classification and link predic-
tion tasks. We evaluate PRINGLE on commonly used benchmark
datasets and newly introduced real-world graph datasets that sim-
ulate FDGN in e-commerce systmes, which is expected to foster
practical research in noise-robust graph learning.

ACKNOWLEDGEMENTS
This work was supported by Institute of Information & communi-
cations Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT) (No.2022-0-00077, No.2022-0-00157).

Noise Robust Graph Learning under Feature-Dependent Graph-Noise WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore.

REFERENCES
[1] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel

Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, et al. 2017. A closer look at memorization in deep networks. In
International conference on machine learning. PMLR, 233–242.

[2] Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, and Masashi Sugiyama. 2021.
Confidence scores make instance-dependent label-noise learning possible. In
International conference on machine learning. PMLR, 825–836.

[3] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational inference:
A review for statisticians. Journal of the American statistical Association 112, 518
(2017), 859–877.

[4] Yoonhyuk Choi, Jiho Choi, Taewook Ko, Hyungho Byun, and Chong-Kwon
Kim. 2022. Finding Heterophilic Neighbors via Confidence-based Subgraph
Matching for Semi-supervised Node Classification. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 283–292.

[5] Enyan Dai, Charu Aggarwal, and Suhang Wang. 2021. Nrgnn: Learning a label
noise resistant graph neural network on sparsely and noisily labeled graphs. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 227–236.

[6] Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. 2022. Towards Robust Graph
Neural Networks for Noisy Graphs with Sparse Labels. WSDM (2022).

[7] Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. 2020. Variational inference
for graph convolutional networks in the absence of graph data and adversarial
settings. Advances in Neural Information Processing Systems 33 (2020), 18648–
18660.

[8] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. 2021. SLAPS: Self-
supervision improves structure learning for graph neural networks. Advances in
Neural Information Processing Systems 34 (2021), 22667–22681.

[9] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[10] Ahmet Iscen, Jack Valmadre, Anurag Arnab, and Cordelia Schmid. 2022. Learn-
ing with neighbor consistency for noisy labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4672–4681.

[11] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 66–74.

[12] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2022.
Empowering graph representation learning with test-time graph transformation.
arXiv preprint arXiv:2210.03561 (2022).

[13] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[14] Danning Lao, Xinyu Yang, QitianWu, and Junchi Yan. 2022. Variational inference
for training graph neural networks in low-data regime through joint structure-
label estimation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 824–834.

[15] Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. 2022. Evennet:
Ignoring odd-hop neighbors improves robustness of graph neural networks.
arXiv preprint arXiv:2205.13892 (2022).

[16] Junnan Li, Richard Socher, and Steven CH Hoi. 2020. Dividemix: Learning with
noisy labels as semi-supervised learning. arXiv preprint arXiv:2002.07394 (2020).

[17] Kuan Li, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. 2022. Reliable Representations Make A Stronger Defender: Unsupervised
Structure Refinement for Robust GNN. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 925–935.

[18] Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. 2022.
Compact Graph Structure Learning via Mutual Information Compression. In
Proceedings of the ACM Web Conference 2022. 1601–1610.

[19] Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang
Tang. 2021. Graph neural networks with adaptive residual. Advances in Neural
Information Processing Systems 34 (2021), 9720–9733.

[20] Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. 2019. A flexible generative
framework for graph-based semi-supervised learning. Advances in Neural Infor-
mation Processing Systems 32 (2019).

[21] XiaoxiaoMa, JiaWu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong,
and Leman Akoglu. 2021. A comprehensive survey on graph anomaly detection
with deep learning. IEEE Transactions on Knowledge and Data Engineering (2021).

[22] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[23] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[24] Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen,
and Jian Wu. 2023. Robust Training of Graph Neural Networks via Noise Gov-
ernance. In Proceedings of the Sixteenth ACM International Conference on Web
Search and Data Mining. 607–615.

[25] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[26] Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh Chawla.
2023. Learning MLPs on Graphs: A Unified View of Effectiveness, Robustness,
and Efficiency. In International Conference on Learning Representations. https:
//openreview.net/forum?id=Cs3r5KLdoj

[27] Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, and Kun Zhang.
2021. Instance-dependent label-noise learning under a structural causal model.
Advances in Neural Information Processing Systems 34 (2021), 4409–4420.

[28] Wentao Zhao, Qitian Wu, Chenxiao Yang, and Junchi Yan. 2023. GraphGLOW:
Universal and Generalizable Structure Learning for Graph Neural Networks.
arXiv preprint arXiv:2306.11264 (2023).

A DETAILS ON EXPERIMENTAL SETTINGS
A.1 Baselines
We compare PRINGLE with a wide range of noise-robust graph
learning methods, which includes feature noise-robust grah learn-
ing methods (i.e., AirGNN [19]), structure-noise robust graph learn-
ing methods (i.e., ProGNN [11], RSGNN [6], STABLE [17] and
EvenNet [15]), and label noise-robust graph learning methods (i.e.,
NRGNN [5] and RTGNN [24]). We also consider WSGNN [14]
and GraphGLOW [28] that are generative graph learning methods
utilizing variational inference technique. The publicly available
implementations of baselines can be found at the following URLs:
• WSGNN [14] : https://github.com/Thinklab-SJTU/WSGNN
• GraphGLOW [28] : https://github.com/WtaoZhao/GraphGLOW
• AirGNN [19] : https://github.com/lxiaorui/AirGNN
• ProGNN [11] : https://github.com/ChandlerBang/Pro-GNN
• RSGNN [6] : https://github.com/EnyanDai/RSGNN
• STABLE [17] : https://github.com/likuanppd/STABLE
• EvenNet [15] : https://github.com/Leirunlin/EvenNet
• NRGNN [6] : https://github.com/EnyanDai/NRGNN
• RTGNN [6] : https://github.com/GhostQ99/RobustTrainingGNN

A.2 Evaluation Protocol
We mainly compare the robustness of PRINGLE and the base-
lines under both the synthetic and real-world feature-dependent
graph-noise (FDGN). Additionally, we consider independent fea-
ture/structure/label noise, i.e., random feature noise, random struc-
ture noise, uniform label noise, and pair label noise following exist-
ing works [6, 17, 19, 24].

We conduct both the node classification and link prediction
tasks. For node classification, we perform a random split of the
nodes, dividing them into a 1:1:8 ratio for training, validation, and
testing nodes. Once a model is trained on the training nodes, we
use the model to predict the labels of the test nodes. Regarding
link prediction, we partition the provided edges into a 7:3 ratio
for training and testing edges. Additionally, we generate random
negatives that are selected randomly from pairs that are not directly
linked in the original graphs. After mode learning with the training
edges, we predict the likelihood of the existence of each edge. This
prediction is based on a dot-product or cosine similarity calculation
between node pairs of test edges and their corresponding negative
edges. To evaluate performance, we use Accuracy as the metric
for node classification and Area Under the Curve (AUC) for link
prediction.

A.3 Implementation Details
For each experiment, we report the average performance of 3 runs
with standard deviations. For all baselines, we use the publicly

https://openreview.net/forum?id=Cs3r5KLdoj
https://openreview.net/forum?id=Cs3r5KLdoj

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Yeonjun In et al.

Table 5: Hyperparameter settings on PRINGLE for Table 1.

Dataset Setting lr 𝜆1 𝜆2 𝜃1 𝑘 𝛾

Cora

Clean 0.01 0.003 0.003 0.1 300 1
FDGN-10% 0.005 0.003 0.003 0.2 50 1
FDGN-30% 0.001 0.003 0.003 0.2 100 1
FDGN-50% 0.0005 30 0.003 0.3 50 1

Citeseer

Clean 0.0005 0.003 0.3 0.1 50 0
FDGN-10% 0.005 0.3 0.003 0.3 10 0
FDGN-30% 0.001 0.003 0.003 0.1 300 1
FDGN-50% 0.001 0.003 0.003 0.1 300 1

Photo

Clean 0.01 0.03 0.3 0.1 10 0
FDGN-10% 0.0005 0.03 0.3 0.1 10 0
FDGN-30% 0.001 3 0.03 0.1 10 0
FDGN-50% 0.0005 30 0.03 0.1 10 0

Comp

Clean 0.01 30 0.03 0.1 10 0
FDGN-10% 0.01 0.3 0.03 0.1 10 0
FDGN-30% 0.01 0.003 0.003 0.1 10 0
FDGN-50% 0.0005 0.003 0.03 0.1 10 0

available implementations and follow the implementation details
presented in their original papers. For PRINGLE, we report the
details of hyperparameter settings in Table 5.

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 Under Independent Feature/Structure/Label

Noise
In this subsection, we further evaluate the robustness of PRINGLE un-
der independent feature/structure/label noise settings. In this setup,
each type of noise occurs independently and does not affect the
occurrence of the others. To this end, we generate three types of
noise: random feature noise, random structure noise, and random
label noise.

Clean 10% 30% 50%
Feature Noise (%)

80.0

82.5

85.0

No
de

 C
la

s.
Ac

c
(%

) Cora

GCN
AirGNN
PRINGLE

Clean 10% 30% 50%
Feature Noise (%)

70

72

74

76

Citeseer

GCN
AirGNN
PRINGLE

Figure 7: Node classification performance of baselines
and PRINGLE on Cora and Citeseer dataset under inde-
pendent feature noise (noise rate from 0% to 50%).

Clean 10% 30% 50%
Structure Noise (%)

80

85

No
de

 C
la

s.
Ac

c
(%

) Cora

GCN
RSGNN
STABLE
PRINGLE

Clean 10% 30% 50%
Structure Noise (%)

65

70

75

Citeseer

GCN
RSGNN
STABLE
PRINGLE

Figure 8: Node classification performance of baselines
and PRINGLE on Cora and Citeseer dataset under inde-
pendent structure noise (noise rate from 0% to 50%).

Evaluating robustness under independent feature noise. In
this setting, we evaluate the models on a graph containing only the
feature noise, i.e., random feature noise. In Fig 7, PRINGLE consis-
tently outperforms the feature noise-robust graph learning method

(i.e., AirGNN) under independent feature noise. We attribute the ro-
bustness of PRINGLE under independent feature noise to the graph
structure learning module that accurately infers the latent graph
structure 𝑍𝐴 . The utilization of abundant local neighborhoods ac-
quired through the inference of 𝑍𝐴 enables effective smoothing for
nodes with noisy features, leveraging the information within these
neighborhoods.
Evaluating robustness under independent structure noise. In
this setting, we evaluate the models on a graph containing only
the structure noise, i.e., random structure noise. In Fig 8, Under
the influence of independent structure noise, PRINGLE maintains
a consistently competitive performance when compared to other
structure noise-robust graph learning methods, namely RSGNN
and STABLE. We attribute the effectiveness of PRINGLE under
independent structure noise to inferring the robust latent clean
graph structure. In other words, the inference of the latent clean
graph structure 𝑍𝐴 assigns greater weights to latent clean edges
and lower weights to observed noisy edges by employing regular-
izations on both the edge predictions and labels, thereby mitigating
structural noise.

Clean 10% 30% 50%
Uniform Label Noise (%)

60

70

80

No
de

 C
la

s.
Ac

c
(%

) Cora

GCN
NRGNN
RTGNN
PRINGLE

Clean 10% 30% 50%
Uniform Label Noise (%)

50

60

70

Citeseer

GCN
NRGNN
RTGNN
PRINGLE

Figure 9: Node classification performance of baselines
and PRINGLE on Cora and Citeseer dataset under inde-
pendent uniform label noise (noise rate from 0% to 50%).

Clean 10% 30% 50%
Pair Label Noise (%)

60

80

No
de

 C
la

s.
Ac

c
(%

) Cora

GCN
NRGNN
RTGNN
PRINGLE

Clean 10% 30% 50%
Pair Label Noise (%)

40

60

Citeseer

GCN
NRGNN
RTGNN
PRINGLE

Figure 10: Node classification performance of baselines
and PRINGLE on Cora and Citeseer dataset under inde-
pendent pair label noise (noise rate from 0% to 50%).

Evaluating robustness under independent label noise In this
setting, we evaluate the models on a graph containing only the
label noise, i.e., uniform label noise and pair label noise. In Fig 9 and
10, PRINGLE demonstrates consistent superiority or competitive
performance compared to label noise-robust graph learning meth-
ods, namely NRGNN and RTGNN, in the presence of independent
label noise. We argue that the effectiveness of PRINGLE stems from
the accurate inference of the latent clean structure. Specifically, the
inferred latent node label 𝑍𝑌 is regularized using the inferred latent
structure 𝑍𝐴 to meet the homophily assumption (i.e., Lhom). Lever-
aging the clean neighbor structure, this regularization technique
has been demonstrated to effectively address noisy labels [10].

	Abstract
	1 Introduction
	2 Related Work
	3 Feature-Dependent Graph-Noise
	3.1 Preliminary Analysis on FDGN

	4 Proposed Method: PRINGLE
	4.1 Problem Statement
	4.2 Model Formulation
	4.3 Model Instantiations

	5 Experiments
	5.1 Quantitative Results
	5.2 Model Analyses

	6 Conclusion
	References
	A Details on Experimental Settings
	A.1 Baselines
	A.2 Evaluation Protocol
	A.3 Implementation Details

	B Additional Experimental Results
	B.1 Under Independent Feature/Structure/Label Noise

