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ABSTRACT

Over the past decades, text classification underwent remarkable
evolution across diverse domains. Despite these advancements,
most existing model-centric methods in text classification cannot
generalize well on class-imbalanced datasets that contain high-
similarity textual information. Instead of developing new model
architectures, data-centric approaches enhance the performance
by manipulating the data structure. In this study, we aim to inves-
tigate robust data-centric approaches that can help text classifica-
tion in our collected dataset, the metadata of survey papers about
Large Language Models (LLMs). In the experiments, we explore
four paradigms and observe that leveraging arXiv’s co-category
information on graphs can help robustly classify the text data over
the other three paradigms, conventional machine-learning algo-
rithms, pre-trained language models’ fine-tuning, and zero-shot /
few-shot classifications using LLMs.
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1 INTRODUCTION

Text classification, as a fundamental task in natural language pro-
cessing (NLP), has undergone significant evolution over the past
few decades in many application fields, such as context understand-
ing [20, 21, 42], content debiasing [61, 62], spam detection [2], and
taxonomy generation [25]. Conventional methods transform the
text via sparse feature representation, e.g., bag-of-words model [53].
Recently, deep-learning-based approaches, such as long short-term
memory (LSTM) [15], have been widely applied to better learn
text representations. Subsequent improvements [22, 51] attempt
to capture the long-range dependencies of words for textual un-
derstanding. Most of these methods improve performances from
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Figure 1: The overall process of our data-centric approaches.
The arrow points to the next step in the workflow.

the angle of model architecture but couldn’t generalize well on
specific types of text data, such as class-imbalanced data [33] or
high-similarity data [31], which are commonly seen in daily lives.

Recent studies reveal that data-centric approaches could be a
potential solution to enhance text classification performance [3, 16].
Compared to the model-centric approaches, which aim to design
a well-generalized model on the given datasets, data-centric ap-
proaches usually optimize the model’s outputs by manipulating the
dataset [52]. In this study, we aim to investigate robust data-centric
approaches that can help improve text classification performance
on class-imbalance datasets that contain similar textual information.
To illustrate our data-centric approaches, we present the overall
process in Figure 1. Our process is mainly divided into two stages,
data development and data assessment. In the data development
stage, we initially collected the metadata of Large Language Models
(LLMs)’ survey papers until November 30", 2023, and then assigned
each paper to the corresponding category in our new proposed tax-
onomy. In our collected dataset, on the one hand, the distribution
of each category is not uniform, which leads to a substantial class
imbalance issue. On the other hand, authors usually use similar
terminologies to describe LLMs in the title and the abstract of these
survey papers. Such a textual similarity introduces significant diffi-
culties in text classifications. To embrace these two challenges, we
conduct investigations into various types of data, such as attributed
graphs and text data. In the data assessment stage, we first evalu-
ate which types of data can yield superior classifications in four
paradigms, conventional machine learning algorithms, graph struc-
ture learning, fine-tuning the pre-trained language models, and
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zero-shot/few-shot classifications using LLMs. Our evaluations re-
veal that leveraging the graph structure information of co-category
graphs can help better classifications over the other three paradigms.
After evaluating the data, we visualize various graph structures to il-
lustrate the effectiveness of graph structure learning on co-category
graphs. Last, we store our datasets for future retrieval. !

Overall, our primary contributions can be summarized as follows:

o We first investigate data-centric approaches that can help
text classification on class-imbalance datasets that contain
similar textual information.

o We first collect the metadata of 112 literature reviews about
Large Language Models (LLMs) and propose a new taxonomy
for these papers.

o Extensive experiments indicate that graph structure learning
on co-category graphs can robustly classify the text data and
substantially outperform the other three paradigms.

2 RELATED WORK
2.1 Data-centric Artificial Intelligence (AI)

The success of Al models is inseparable from a large amount of
high-quality annotated data [32, 54]. Compared to improving Al
models, an increasing number of research works are dedicated
to developing frameworks, commonly named Data-centric Al ap-
proaches, that can iteratively improve the data quality for Al sys-
tems [52]. Most related papers can be divided into two categories,
automatic approaches and collaborative approaches [52]. The auto-
matic approaches aim to automate the process of data manipulation,
whereas the collaborative approaches involve human collaboration.
Within the former category, the majority of works are classified
based on the types of approaches, such as programming-based
methods [26, 28], learning-based [18, 43], and pipeline-based meth-
ods [12, 38]. In the latter category, most works are assigned based
on the extent of human involvement, such as full collaboration [27]
or partial collaboration [4].

2.2 Graph Structure Learning

Graph Neural Networks (GNNs) have been widely used for graph
structure learning [7, 8, 19, 46, 49, 55, 56, 58, 59]. Bruna et al. [6]
first extend convolution operations on graphs using both spatial
methods and spectral methods. To improve the efficiency of the
eigendecomposition of the graph Laplacian matrix, Defferrard et
al. [10] approximate spectral filters by using K-order Chebyshev
polynomial. Kipf et al. [23] simplify graph convolutions to a first-
order polynomial while achieving state-of-the-art performance for
semi-supervised learning. Hamilton et al. [13] propose an inductive-
learning approach that aggregates node features from correspond-
ing fixed-size local neighbors. These GNNs have been proven to
achieve extraordinary performance in graph structure learning.

2.3 Text Classification

Text Classification has been widely studied in recent years [24, 47,
438, 60]. In the late 20th century, machine-learning models were ini-
tially developed to classify text data [39]. Since 2017, Transformer
kicked off the era of large language models and has achieved a huge

Dataset and source codes: https://github.com/junzhuang-code/DCGSL
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breakthrough in text understanding [45]. On the one hand, by har-
nessing the power of Transformer [45], BERT [22] can better learn
the bidirectional representations, significantly enhancing the per-
formance across a wide range of contextual understanding [35-37].
Subsequent improvements, such as RoBERTa [34], DistilBERT [41],
and Albert [29], made substantial contributions to this direction.
On the other hand, inspired by the Transformer [45], researchers at
OpenAl, introduced a series of Generative Pre-Training (GPT) mod-
els, such as GPT-1 [40], that integrate unsupervised pre-training
with supervised fine-tuning. With iterative enhancements, GPT-3
achieved human-level classification performance on several NLP
benchmarks [5]. GPT-4 extended the capabilities to multi-modal
learning and obtained remarkable advancements, leading the devel-
opment of large language models [1]. Besides employing language
models, Yao et al. [51] first explore leveraging graph neural net-
works in text classification, which sparked enthusiasm for better un-
derstanding textual information via graph structure learning [17].

3 METHODOLOGY

In this section, we introduce our data-centric approaches in two
stages, data development and data assessment. In the former stage,
we introduce the process of data collection, data labeling, and data
construction. For the latter stage, we mainly explain the evaluation
of graph structure learning.

3.1 Data Development

In the data development stage, we divide the process into data
collection, data labeling, and data construction. We introduce each
step in detail in this section.
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Figure 2: Trends of survey papers on large language models.
We focus on the trends of the first released date.

3.1.1 Data Collection. In recent years, large language models at-
tracted more and more attention. Related survey papers have also
been continuously emerging in 2023. As shown in Figure 2, the
trend has been increasing, with significant growth in March, July,
and November of 2023. We scraped the metadata of survey papers
about large language models from the arXiv website and further
manually supplemented the dataset from Google Scholar. We up-
dated the dataset weekly until November 30, 2023, and collected
112 survey papers in this study.

To better understand the collected papers, we present the word
frequency in Figure 3 to show which words have been frequently
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Figure 4: The mind map of survey papers about large lan-
guage models. Besides "Comprehensive" and "Others" that
are not included in the mind map, we highlight thirteen
categories in our proposed taxonomy. The total number of
classes in the labels is fifteen.
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new taxonomy and assigned each paper to the corresponding class. < o
One benefit of providing the taxonomy is that a taxonomy can help arXiv Categories

newcomers understand the hierarchy of concepts. The mind map

of the proposed taxonomy is presented in Figure 4. We highlight Figure 6: Distribution of arXiv categories in our dataset.
thirteen classes in the mind map. The total classes in the labels are

fifteen, including "Comprehensive" and "Others" (Not presented in Overall, we present the data description in Table 1.

the mind map). To better understand the distribution of the classes,
we present the class distribution in Figure 5. The distribution indi-
cates that the class is extremely imbalanced, introducing a challenge
to this classification task.

Note that we prefer to propose a new taxonomy instead of using
the arXiv categories since the arXiv categories cannot reflect the
concept hierarchy for LLMs. To illustrate this point, we present the
distribution of survey papers across different arXiv categories in DEFINITION 1. An attributed graph G denotes a graph structure
Figure 6. Top-2 frequent categories are "cs.CL" (Computation and that represents topological connections & among a set of vertices
Language), and "cs.AI" (Artificial Intelligence), which means that V associated with attributes. The topological relationship among

3.1.3 Data Construction. In the previous section, we explain the
motivation for exploring graph structure learning. The goal of
constructing attributed graphs is to utilize the graph structure
information to classify survey papers into corresponding categories
in the proposed taxonomy. Before constructing the graphs, We first
define the attributed graphs as follows.
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Table 1: Descriptions of data attributes in our dataset.

Attributes Descriptions

Taxonomy proposed categories
Title paper title
Authors lists of author’s name
Release Date first released date
Links links of papers

Paper ID arXiv’s paper ID
Categories arXiv’s categories
Summary abstract of papers

vertices in G(V,E) can be represented by a symmetric adjacency
matrix A € RN*N where N is the number of vertices. Each vertex
contains an attribute (feature) vector. All feature vectors constitute
a feature matrix X € RN*d where d is the number of features for
each vertex. Therefore, the matrix representation of G(V, &) can be
defined as G(A, X).

Based on Definition 1, we start by creating the term frequency-
inverse document frequency (TF-IDF) feature matrices for both
title and summary columns, where the term frequency denotes the
word frequency in the document, and inverse document frequency
denotes the log-scaled inverse fraction of the number of documents
containing the word. TF-IDF matrix is commonly used for text
classification tasks because it helps capture the distinctive words
that can indicate specific classes. After establishing the TF-IDF
matrices, we apply one-hot encoding on the arXiv’s categories and
then combine three matrices along the feature dimension to build
the feature matrix X.

To leverage the topological information among vertices, we pro-
ceed to construct the graph structures to connect the attribute
vectors. In this study, we are interested in three types of graphs,
text graph, co-author graph, and co-category graph.

To enhance the text classification, Yao et al. [51] initially verified
that long-distance lexical relationships can be effectively repre-
sented in a text graph. Thus, in the work, we follow the same
settings as TextGCN [51] to build text graphs. Note that in the text
graph, the aforementioned feature matrix remains unutilized as
only paper vertices contain attribute vectors. To retain consistency,
all entries in the feature matrix are uniformly set to unity. Corre-
spondingly, solely paper vertices are endowed with labels, while all
word vertices are uniformly assigned a new class, which remains
untouched throughout both the training and testing phases.

Exploring the co-relationship among vertices is a common prac-
tice in graph structure learning [13]. In our dataset, two attributes,
"Authors" and "Categories", can be utilized to explore such co-
relationships as these attributes exhibit inherent connections among
survey papers. Thus, we build co-author graphs and co-category
graphs using these two attributes. In the co-author graph, we intro-
duce an edge connecting two vertices (papers) if they share at least
one common author. In the co-category graph, an edge is added
between two vertices with at least one common category. In these
two types of graphs, each vertex is assigned one class (taxonomy)
as the label. Note that in this study all edges are undirected.

Besides constructing graphs, we compare the performances on
text data, which includes both the title and abstract of survey papers.

Jun Zhuang

3.2 Data Assessment

In this section, we mainly introduce how we evaluate the classifica-
tion performances on our constructed attributed graphs. Moreover,
we provide additional evaluation for the other three paradigms
in the experiment section. After evaluating the data, we further
visualize the graphs and store the datasets during the process.

3.2.1 Graph Structure Learning in Text Classification. Given the
well-built attributed graphs G (A, X), we aim to investigate whether
data-centric graph structure learning using graph neural networks
(GNNis) can help text classification. Before feeding the matrix repre-
sentation, A and X, of the attributed graphs G into GNNs, we first
preprocess the adjacency matrix A as follows:

A=D":AD 3, 1)

where A = A+Iy,D =D +1Iy. Iy isan identity matrix. D;; =
2.j Aij is a diagonal degree matrix.

After preprocessing, we utilize GNNs to learn node representa-
tion. Note that in this study, a node in graphs could represent a
word or a document. By doing so, we could transform the text clas-
sification tasks into the node classification tasks. This transforma-
tion underscores the versatility of GNNs in handling diverse tasks.
Within these tasks, the layer-wise message-passing mechanism of
GNN:ss serves as a foundation to capture intricate relationships in
graph-structured data. For general expression, we formulate the
layer-wise message-passing mechanism of GNNs as follows:

fwo (A,H(I)) =0 (AH(I)W(I)) s (2)

where H) is a node hidden representation in the /-th layer. The di-
mension of H) in the input layer, middle layer, and output layer is
the number of features d, hidden units h, and classes K, respectively.
H® =X WO js the weight matrix in the [-th layer. o denotes a
non-linear activation function, such as ReLU.

In general node classification tasks, a GNN is trained with ground-
truth labels Y € RNVX!, In this study, we build the ground-truth
labels based on our proposed taxonomy. To simplify the problem,
each paper is assigned one primary category as the label, even if the
paper sometimes may belong to more than one category. During
training, we optimize GNNs with cross-entropy as follows.

Ntr

K
1 .
Lee == D 2 viklog Ui ®)
r

i=1 k=1

where y; ;. denotes a ground-truth label of the i-th node in the k-th
class; §j; . denotes a predicted label of the i-th node in the k-th class;
Ny denotes the number of train nodes; K denotes the number of
classes. The i-th predicted label g; is computed by choosing the
maximum probability of the corresponding categorical distribution.

In brief, we formalize the problem that we aim to solve via data-
centric graph structure learning in this study as follows.

PROBLEM 1. After constructing an attributed graph G (A, X) and
ground-truth labels Y, we train a graph neural network (GNN) on the
train data and evaluate the classification performance on the test data.
Our goal is to design a data-centric method that can help robustly
classify the text data.
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Table 2: Evaluation of data-centric graph structure learning on three types of attributed graphs. We also conduct an ablation
study on the graph structure of co-category graphs. Rm denotes "Removed".

GCN GraphSAGE GIN TAGCN
Accuracy Weighted-F1 ~ Accuracy ~ Weighted-F1  Accuracy Weighted-F1 = Accuracy Weighted-F1
Text 2545 (3.64) 18.11(2.39) 21.82(12.33) 14.54 (9.07) 16.36 (2.23) 10.76 (2.08) 4.64 (1.40)  3.90 (1.28)
Co-author 25.22 (8.43) 26.59 (10.20) 33.91(6.96)  34.09 (7.97) 26.96 (11.47) 26.04 (11.30) 35.65 (10.07) 32.54 (10.56)
Co-category (All) 77.39 (7.48) 7473 (9.81)  75.65 (3.48)  75.24 (3.07) 69.57 (7.08) 69.32(9.42) 72.17 (5.90) 69.65 (5.51)

Co-category (Rm cs.CL)
Co-category (Rm cs.Al)
Co-category (Rm cs.CL, cs.Al)

29.57 (5.07)  28.11 (5.28)

75.65 (9.37) 7339 (10.21)  75.65 (8.06)
80.00 (8.95) 77.93 (10.11) 80.87 (13.07) 78.77 (14.34) 70.87 (8.06) 67.54 (6.10) 73.91(9.53) 71.80 (8.27)
32.17 (3.48)

73.85(9.08) 67.39 (9.12) 6537 (8.47) 66.96 (8.06) 63.76 (9.50)

27.07 (3.52) 19.13 (10.51) 15.85 (8.16) 41.74 (13.07) 40.03 (14.02)

7739 (6.39)  75.49 (7.33)

Co-category (Rm cs.IR) (
77.39 (4.26)  75.15 (
(
(

Co-category (Rm cs.RO)
Co-category (Rm cs.SE)
Co-category (Rm cs.IR, cs.RO)
Co-category (Rm cs.IR, cs.SE)
Co-category (Rm cs.RO, cs.SE)

75.65 (8.06)  73.46
76.52 (4.43)  73.99 (6.42)
7739 (6.39)  75.49 (7.33)

73.91 (3.89)
5.88)  75.65(4.43) 74.00(5.02) 69.57 (7.08) 69.32(9.42) 72.17 (5.90) 69.65 (5.51)
8.16) 75.65(2.13) 74.82 (2.28) 68.70 (9.28) 64.06 (10.62) 71.30 (10.14) 67.98 (8.37)
73.04 (5.07)
74.78 (5.07)  73.53 (5.59)

78.26 (4.76) 76.39 (6.85) 74.78 (5.07) 7253 (6.10) 68.70 (9.28) 64.06 (10.62) 71.30 (10.14) 67.98 (8.37)
Co-category (Rm cs.IR, cs.RO, cs.SE) 78.26 (4.76) 76.39 (6.85) 75.65(5.90) 74.26 (7.02)

7321 (443) 69.57 (7.08) 69.32 (9.42) 72.17 (5.90) 69.65 (5.51)

70.89 (5.88) 69.57 (7.08) 69.32 (9.42) 72.17 (5.90) 69.65 (5.51)
559)  68.70 (9.28) 64.06 (10.62) 71.30 (10.14) 67.98 (8.37)

68.70 (9.28) 64.06 (10.62) 71.30 (10.14) 67.98 (8.37)

4 EXPERIMENTS

In this section, we verify the effectiveness and robustness of graph
structure learning for text classification in our dataset. We further
examine its superior performance over the other three paradigms.

4.1 Experimental Settings

Table 3: Statistics of graph datasets. |V|, |E|, |F|, and |C| de-
note the number of nodes, edges, features, and classes, re-
spectively.

Dataset |V| |E]| |F| |C]
Text 737 95987 737 16
Co-author 112 204 3,065 15

Co-category (All) 112 4904 3,065 15

We investigate three types of attributed graphs, text graphs, co-
author graphs, and co-category graphs, for graph structure learning
and present their statistics in Table 3. Note that the text graph
consists of paper vertices and word vertices, and thus contains 16
classes because all word vertices are labeled as a new class, which is
not touched during the training or testing phase. In the comparative
analysis, we examine the classic machine-learning algorithms on
the above feature matrix and evaluate the language models on the
text data, which contains both title and summary.

To validate our methods, we split the train, validation, and test
data as 60%, 20%, and 20%. After the split, we’re aware that different
splits will highly affect the performance on such a small dataset.
So, we ran the experiments five times using random seed IDs from
0 to 4 and reported the mean values with corresponding standard
deviations, mean (std).

We evaluate the classification performance by accuracy and
weighted f1 score. Accuracy is a common metric on classification
tasks, whereas the weighted f1 score provides a balanced measure
of the class-imbalanced dataset.

4.2 Data-centric Graph Structure Learning Can
Help Text Classification.

We investigate whether leveraging the graph structure informa-
tion can robustly help classify the text data in our dataset. In this
experiment, we build graph structures based on the text data (in-
cluding the title and summary) and the relationship of co-author
and co-category. After building the graphs, we examine various
graph structures on four classic graph neural networks, GCN [23],
GraphSAGE [13], GIN [49], and TAGCN [11].

According to the results in Table 2, four GNNs fail to learn graph
representation on both the text graph and the co-author graph.
For the text graph, we argue that the degradation of GNNs may
be caused by excessively similar words in the summary of survey
papers. When constructing the text graph, these word vertices
connect with many paper vertices, resulting in the paper vertices
being less distinguishable. For the co-author graph, we conjecture
that it is challenging to categorize papers solely based on the sparse
co-authorship in this dataset.

On the contrary, four GNNs can achieve great performance (eval-
uated by both accuracy and weighted F1 score) in most co-category
graphs. We conducted an ablation study to examine various graph
structures of co-category graphs. First, according to Figure 6, most
papers are assigned as "cs.CL" and "cs.Al" in the arXiv categories.
Thus, we study how the categories, "cs.CL" and "cs.AI", affect the
performance by muting these two categories in a combinatorial
manner. In Table 2, we observe that GNNs can maintain a compara-
ble performance after removing either "cs.CL" or "cs.AI". However,
the performance dramatically drops after removing both categories.
This is possible since most node connections are significantly spar-
sified after these two categories are removed. In other words, even
though both "cs.CL" and "cs.AI" do not directly map to the ex-
isting classes, either one can help connect the nodes and further
strengthen the message-passing mechanism in GNNs, allowing
GNN s to learn better node representation.

We visualize the co-category graphs in Figure 7. The visual-
ization indicates that most nodes, such as the nodes labeled with
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Figure 7: Visualization of co-category graphs. We visualize the graphs by muting the categories.

red or pink color, are clustered well even if we remove the cate-
gory either "cs.CL" or "cs.Al". However, after removing these two
categories simultaneously, we observe that node classifications
gradually become disordered and many nodes are then isolated.
This visualization helps us intuitively understand the effectiveness
of graph structure learning.

We also visualize GCNs’ hidden representation on the above
co-category graphs in Figure 8, which shows that nodes are well-
classified in the hidden space even if either the category "cs.CL"
or "cs.Al" is removed. However, the distribution of nodes tends to
become chaotic when these two categories are removed simultane-
ously. The visualization verifies experimental results in Table 2.

To further assess the robustness of graph structure learning, we
conducted another ablation study to examine how the categories,
"cs.IR", "cs.SE", and "cs.RO", affect the classification performance
as their names are similar to that of some classes in our proposed
taxonomy. Note that our proposed taxonomy is not based on the

arXiv categories. According to Table 2, the performances are well-
maintained no matter which category is removed. We argue that
results are reasonable since the removals only drop a small number
of edges and don’t break the topological connections in the graph.

Besides examining various graph structures, we compare the per-
formance of graph structure learning under different noise ratios
(nr) in the train labels. Even though it’s expected that the classifi-
cation accuracy decreases as the noise ratio increases, the results
in Figure 9 indicate that learning through co-category graphs can
achieve robust performance across different noise ratios and sta-
bly outperform the other two graph structures. Overall, the above
experiments verify the robustness of graph structure learning on
co-category graphs.

4.3 Comparative Analysis

After verifying the effectiveness of graph structure learning, we
further investigate the performance of several classic models in
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Figure 8: Visualization of GCNs’ hidden representation on co-category graphs in 2-dimension via t-SNE. Each dot represents

one node and is labeled with one color.

Table 5: Evaluation of fine-tuning the pre-trained language
models on the text data.

Accuracy (%)
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Text Graphs
Co-author Graphs
Co-category Graphs

30
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Figure 9: Comparison of three types of graph structures un-
der different noise ratios (nr).

three different paradigms on the classification tasks. Specifically,
we first employ classic machine learning algorithms on the feature
matrix (without leveraging the topological relationships). Second,
we fine-tune the pre-trained language models on the text data for
the downstream classification tasks. Third, we evaluate the zero-
shot / few-shot classification capabilities of large language models.

Table 4: Evaluation of classic machine learning algorithms
on the feature matrix. We denote NB, SVM, RF, and GB as
Naive Bayes Classifiers, Support Vector Machines, Random
Forest, and Gradient Boosting, respectively.

Algorithms  Accuracy Weighted-F1
NB 39.13 (8.70)  36.82 (9.49)
SVM 2174 (7.28)  14.92 (7.66)
RF 20.87 (4.26)  13.54 (3.29)
GB 33.91(7.48)  32.36 (8.15)

We first examine four classic machine-learning algorithms, Naive
Bayes Classifiers (NB), Support Vector Machines (SVM), Random
Forest (RF), and Gradient Boosting (GB), and present the results
of the first paradigm in Table 4. The results indicate that these
machine-learning algorithms cannot perform well on this task.

Second, we examine whether fine-tuning the pre-trained lan-
guage models on the text data can help achieve better classification.
The results in Table 5 indicate that medium-size language models,
such as DistilBERT [41], can achieve better performance on smaller
text data. However, the performance may dramatically drop when

Language Models Model Size  Accuracy = Weighted-F1
BERT [22] 109.49M  43.48 (11.67)  41.50 (13.50)
RoBERTa [34] 124.66M  40.87 (14.18)  39.68 (19.51)
DistilBERT [41] 66.97M  55.65(9.28)  53.55 (11.25)
XLNet [50] 117.32M  30.43(20.76)  25.72 (23.00)
Electra [9] 109.49M  33.04(5.22)  31.72 (4.87)
Albert [29] 11.70M 11.30 (8.06) 6.56 (7.50)
BART [30] 140.02M 4870 (3.25)  47.77 (7.58)
DeBERTa [14] 139.20M  28.70 (11.20)  25.48 (13.21)
Llama2 [44] 6.61B 14.49 (8.93) 4.72 (4.43)

the model size is too small, such as Albert [29]. We argue that fine-
tuning larger pre-trained language models, such as Llama2 [44], on
smaller text data may cause overfitting issues, which leads to worse
performance on larger models.

Ground-truth labels
Noisy labels

"

BART DeBERTa Llama2

T

Accuracy (%)
—
—

—
—
.

|

Albert

1
BERT RoBERTa DistilBERT XLNet Electra
Figure 10: Comparison of fine-tuning the language models
using ground-truth labels and noisy labels.

We further investigate whether leveraging noisy labels can help
fine-tuning. Our previous experiments confirmed that graph struc-
ture learning can outperform fine-tuning in this classification task.
Thus, we first generate noisy labels by GCN and then fine-tune the
pre-trained language models with the noisy labels. The results in
Figure 10 indicate that for some models, the performance achieved
through training with noisy labels can surpass that of training with
ground-truth labels. One possible reason is that training the model
using noisy labels with a low noise ratio can be equivalent to a kind
of regularization, improving the classification performance [57].
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Table 6: Evaluation of zero-shot and few-shot classification
capabilities of three large language models, Claude, ChatGPT
3.5, and ChatGPT 4.

Accuracy  Weighted-F1
Claude w.o. hints 11.61 (0.90) 12.61 (0.17)
Claude w. hints 10.27 (2.23) 12.79 (1.52)
ChatGPT 3.5 w.o. hints  47.39(3.38)  43.19 (4.57)
ChatGPT 3.5 w. hints ~ 53.56 (2.98)  53.14 (3.02)
ChatGPT 4 w.o. hints ~ 29.76 (5.89)  26.87 (7.86)
ChatGPT 4 w. hints 33.04 (4.55) 27.76 (6.32)

Third, we evaluate the zero-shot and few-shot classification ca-
pabilities of three large language models, Claude, ChatGPT 3.5, and
ChatGPT 4. We ran the experiments five times and presented the
mean value with the corresponding standard deviation in Table 6.
Among the large language models, ChatGPT 3.5 outperforms the
other two models given that all models have not seen the data be-
fore (zero-shot). We further provide some hints to the models before
classification (few-shot). For example, we release the keywords of
the class "Trustworthy" to the models before classification. In this
setting, both ChatGPT 3.5 and ChatGPT 4 can achieve higher accu-
racy and a weighted F1 score after obtaining some hints. Overall,
all three LLMs cannot outperform graph structure learning, which
reveals that in this task, LLMs still have room to improve.

4.4 Limitation

The experimental results in this study have demonstrated the ef-
fectiveness of leveraging graph structure information to classify
the survey papers. However, constructing a graph structure may
encounter certain constraints. For instance, we build co-category
graphs based on the arXiv categories. When papers come from
distinct fields, such as biology, physics, and computer science, the
graph structure may be very sparse, weakening the effectiveness
of graph structure learning.

4.5 Future Directions

In the future, our primary motivation extended from this study is
to tailor GPT-based applications to assist readers in understanding
survey papers more effectively. On the other hand, our collected
datasets can potentially contribute to node alignment tasks, which
involve the alignment of nodes in one or more graphs, such as
co-category graphs and co-author graphs in this study.

5 CONCLUSION

In this study, we aim to investigate data-centric approaches that
can help text classification on class-imbalance datasets that contain
similar textual information. To build such a dataset, we collected the
metadata of 112 LLMs’ survey papers. In the experiments, we con-
duct a comparative analysis across four paradigms and demonstrate
that graph structure learning outperforms conventional machine-
learning algorithms, pre-trained language models’ fine-tuning, and
zero-shot / few-shot classifications using LLMs. Within graph struc-
ture learning, we explore three types of attributed graphs, text
graph, co-author graph, and co-category graph, and observe that

Jun Zhuang

leveraging arXiv’s co-category information can help robustly clas-
sify text data in our dataset.

A APPENDIX

In the appendix, we present the hyper-parameters and settings for
the models in this study, and the hardware and software.

A.1 Hyper-parameters and Settings

Graph Structure Learning. We examine the effectiveness of
graph structure learning on four classic two-layer GNNs, GCN [23],
GraphSAGE [13], GIN [49], and TAGCN [11], with 200 hidden units
and a ReLU activation function. GNNs are trained by the Adam
optimizer with a learning rate, 1 x 1072 for both co-author graphs
and co-category graphs and 2 x 102 for text graphs, and converged
within 500 training epochs on all datasets. The dropout rate is 0.5.
We chose "gen" and "mean” aggregators for GraphSAGE and GIN,
and fixed the number of filters as 3 for TAGCN.

Table 7: The optimal parameters of random forest (RF) and
gradient boosting (GB) for each data split.

‘ Parameters ‘ Values
Max depth 20, 20, 20, 10, 10
RF Min samples leaf 1,1,2,2,1
Min samples split 10, 5, 10, 5, 10
Number of estimators | 150, 250, 250, 200, 200
Max depth 3,4,5,3,4
GB Min samples leaf 2,2,2,2,4
Min samples split 3,555 3
Number of estimators 50, 50, 50, 50, 50

Machine-learning Algorithms. We apply grid search meth-
ods with four-fold cross-validation to tune the machine-learning
algorithms and report the optimal parameters for each data split
(random seed ID is from 0 to 4) as follows. For Naive Bayes Classi-
fiers, we choose the o as 1.0, 0.5, 0.7, 0.3, and 0.5, respectively. For
Support Vector Machines, we choose the regularization parameter
C as 0.1 and the linear kernel for all splits. For Random Forest and
Gradient Boosting, we present their optimal parameters for each
data split in Table 7.

Pre-trained Language Models’ Fine-tuning. We fine-tune
pre-trained language models using the Adam optimizer with a
1x 107 learning rate. We chose the batch size of 8 for Llama2 and
fixed the batch size of 16 for the rest of the models.

A.2 Hardware and Software

All experiments are conducted on the server with the following
configurations:

e Operating System: Ubuntu 22.04.3 LTS

e CPU: Intel Xeon w5-3433 @ 4.20 GHz

e GPU: NVIDIA RTX A6000 48GB

e Software: Python 3.11, PyTorch 2.1, HuggingFace 4.31, dgl
1.1.2+cull8.
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