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ABSTRACT
Graph-based recommender models leverage graph structures and

Graph Convolutional Networks (GCNs) to model user-item relation-

ships and learn embeddings, improving recommendations’ accuracy.

However, existing methods frequently require a large number of pa-

rameters, complicating training and constraining their applicability

in large-scale data contexts. To solve this issue, this paper proposes

the Lighter-X framework, an innovative solution that significantly

reduces the number of parameters in the model. First, we introduce

a low-rank random matrix to replace the conventional input fea-

ture and transform the graph-based recommender model into the

decoupled GCN framework. Moreover, by applying this strategy to

representative models across different domains, we demonstrate

its plug-and-play property. It proves to be generalizable to differ-

ent models, effectively reducing parameter counts and enhancing

computational efficiency. We conducted extensive experiments, and

the results demonstrate the effectiveness of Lighter-X, which can

significantly reduce the number of parameters while achieving

comparable performance with base models. In particular, in a real

network with millions of interactions, the number of parameters

for Lighter-X is just 1% of LightGCN’s, yet it performs better.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Informa-
tion systems→ Information retrieval.
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1 INTRODUCTION
Recommender systems are information filtering systems designed

to connect users with relevant information. Their primary role is

to assist users in discovering useful content and, simultaneously,

to ensure that information reaches interested users. Collaborative

filtering is a common technique in recommender systems, and the

idea behind it is that users with similar past preferences are likely

to have comparable future preferences. Conventional approaches to

collaborative filtering, such as matrix decomposition, concentrate

on generating a hidden vector representation of users and items

through the decomposition of the user-item interaction matrix.

However, these methods do not utilize the structural information

underlying different users and items [24]. To solve this problem,

people propose to formulate the user-item interactions as a bipartite

graph and enhance the utilization of collaborative filtering infor-

mation via neighbor convolution. By stacking more convolutional

layers, the users and items with longer distances can be associ-

ated and share similar propagated gradients in the optimization

process [8]. Actually, traditional matrix decomposition methods

can be seen as graph-based recommender models with only one

convolutional layer.

Despite effectiveness, graph-based recommender models usually

contain a large number of parameters and need complex convo-

lutional operations, which hinders their application in real-world

scenarios. This problem necessitates the studies of more efficient

graph-based recommender models. For example, LightGCN [10]

is a simplified graph convolutional network (GCN) designed for

recommender systems and performs well in collaborative filtering

tasks. It simplifies the model by omitting feature transformations

and nonlinear activation functions in traditional GNN-based mod-

els such as NGCF [20]. These elements theoretically increase the

representational power of the model but, in practice, may compli-

cate the training process and reduce model effectiveness. Especially

in recommender systems, each node in the interaction graph usu-

ally has only one user or item ID as an input, which makes the

complex structure unnecessary. LightGCN removes these complex

operations and focuses on the neighbor aggregation process, which

reduces the complexity of the model and improves training effi-

ciency and recommendation accuracy.

Although LightGCN has fewer parameters than previous models,

being limited to embeddings for each user and item, it still pos-

sesses a large number of training parameters, expressed as 𝑛 × 𝑑 ,

where 𝑛 represents the total number of users and items and 𝑑 is the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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dimension of the embedding. This raises some concerns about the

practicality of LightGCN in real-world scenarios. Specifically, as

the dataset size grows, leading to an increase in 𝑛, the number of

training parameters in the LightGCN model increases significantly.

This escalation in model complexity and size may pose challenges

in training and deploying the model effectively in large-scale appli-

cations. Recent works introduce polynomial-based filters [9] and

Graph Contrastive Learning (GCL) [2, 25] to improve recommenda-

tion accuracy. However, these models generally use LightGCN as

their backbone network, which would also run into issues of huge

parameter size when dealing with large-scale datasets, limiting

their practical applications.

In recent years, some work has been made to optimize and sim-

plify models like LightGCN, with the majority of these efforts be-

ing centered on approaches derived from matrix decomposition

perspectives [13–15]. For example, SVD-GCN [15] uses the tech-

nique of Singular Value Decomposition (SVD), which reduces Light-

GCN [10] parameters by calculating truncated SVD and obtaining

a low-rank representation of users and items directly. Although

methods such as SVD-GCN [15] demonstrate promising results in

reducing parameters and improving performance, computing SVD

on large-scale graphs will still be a computationally intensive task

requiring large amounts of processing power and memory, which

is challenging even with optimized algorithms [5]. Is it possible to
devise a lighter and more efficient method to minimize the
number of parameters in recommender systems? To achieve

this, a deeper understanding and analysis of GNNs’s operational

mechanisms in recommendation tasks is essential.

In this paper, we attempt to provide a positive answer to this

question. Our contributions can be summarized as follows:

• Based on a further understanding of GNN models and recom-

mender systems, we propose a lighter framework (Lighter-X),
which reduces the parameters in a cost-effective way by employ-

ing compressed sensing theory, and optimizes the computational

efficiency under the decoupled framework to improve the scala-

bility of the model.

• Employing the Lighter-X framework, we improve existing rec-

ommender models and construct LighterGCN, LighterJGCF and

LighterGCL. Detailed complexity analysis of these models demon-

strates that the proposed Lighter-X can effectively reduce model

parameter size and computational complexity.

• We conducted extensive experimental validation on several datasets

and demonstrated that the proposed method is able to achieve

comparable or even better results with a lower number of param-

eters than the original model.

2 BACKGROUND AND PRELIMINARY
2.1 Notations
A recommender system usually contains a user set 𝑈 , an item

set 𝐼 , and a user-item interaction matrix R ∈ {0, 1} |𝑈 |× |𝐼 |
, where

R𝑢𝑖 = 1 indicates that there exists an interaction between user

𝑢 and item 𝑖 . The GNN-based recommendation system utilizes

graph structures to represent the relationships between users and

items. Specifically, the data is constructed into a bipartite graph

𝐺 = (𝑉 , 𝐸), where the node set 𝑉 = 𝑈 ∪ 𝐼 contains all users and

items. The edges in the edge set 𝐸 represent interactions, defined

as 𝐸 = 𝑅′, where 𝑅′ = {(𝑢, 𝑖) |R𝑢𝑖 = 1, 𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 }. The adjacency
matrix of the bipartite graph is denoted as A. D is a diagonal degree

matrix. Formally, the recommendation task is to estimate user 𝑢’s

preference scores for any item 𝑖 ∈ 𝐼 based on the learned user

representation 𝒆𝑢 and item representation 𝒆𝑖 :

�̂�𝑢,𝑖 = 𝑓 (𝒆𝑢 , 𝒆𝑖 ), (1)

where the function 𝑓 (·) can be the dot product, cosine similarity,

multilayer perceptrons (MLPs), etc.

2.2 Graph Neural Networks
Graphs have attracted a lot of interest in the field of machine learn-

ing because of their outstanding expressiveness. GNNs are neural

network architectures designed for graph data, aiming to derive

embeddings enriched with neighborhood information. Typically,

each node on the graph has anℎ-dimensional feature vector 𝒙 ∈ Rℎ ,
which represents the attribute information of that node, e.g., the

user’s age, gender, occupation, etc. The features of the 𝑛 nodes

are stacked into a feature matrix X = [𝒙1, 𝒙2, · · · , 𝒙𝑛]⊤. The GNN
learns a new representation from the input features X through mul-

tiple layers, i.e.,H(0) = X. The most representative work, GCN [12],

adopts normalized aggregation along with self-loop updating meth-

ods. Consequently, the formula for the (ℓ + 1)-th convolutional

layer is expressed as:

H(ℓ+1) = 𝜎

(
P̃H(ℓ )W(ℓ+1)

)
, (2)

where Ã = A + I is the adjacency matrix with added self-loops, I
refers to the identity matrix, and D̃ is the degree matrix of Ã. H(ℓ )

andW(ℓ )
represent the embedding matrix and the learnable weight

matrix at layer ℓ , respectively. P̃ = D̃− 1

2 ÃD̃− 1

2 is the normalized

adjacent matrix. 𝜎 represents the activation function.

The application of conventional GNN models to large-scale

graphs is challenging primarily due to the limitations of full-batch

training. In order to improve the scalability of GNNmodels, a series

of works decouple the feature propagation in GCNs from training

process, such as SGC [22], PPRGo [1] and AGP [19]. In general,

feature propagation can be computed by

Z =

𝐿∑︁
ℓ=0

𝑤ℓZ(ℓ ) =
𝐿∑︁
ℓ=0

𝑤ℓPℓX. (3)

where 𝐿 is the number of layers, and the weight𝑤ℓ corresponds to

the importance of layer ℓ ’s representation. Each layer’s propagation

Z(ℓ )
is derived from the preceding layer through a transformation,

i.e. Z(ℓ ) = PZ(ℓ−1)
. The initial representation Z(0)

is set to the

feature matrix X. Typically, the feature propagation matrix Z is

input into a model, such as a Multilayer Perceptron (MLP), for

training on downstream tasks. For instance, in node classification,

a two-layer MLP might be used: Ŷ = softmax(𝜎 (ZW1)W2). The
predicted probability matrix Ŷ ∈ R𝑛×|𝐶 |

, and each element Ŷ𝑣𝑐
represents the probability that node 𝑣 ∈ 𝑉 belongs to class 𝑐 ∈ 𝐶 =

{1, · · · , |𝐶 |}. Contrary to directly learning the probabilities, the

recommender model concentrates on learning node embeddings.

Using a single-layer simple MLP, the embedding matrix E can be

obtained as E = ZW.
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Table 1: Performance comparison for original and decoupled GNN models. EqualLightGCN denotes the decoupled GNN version
corresponding to the originalmodel LightGCN that employs identitymatrix as the input feature, EqualJGCF and EqualLightGCL
represent the equivalent decoupled versions corresponding to the original JGCF and LightGCL.

Method MovieLens-1M LastFM
hit@10 mrr@10 recall@10 ndcg@10 hit@10 mrr@10 recall@10 ndcg@10

LightGCN 0.7533 0.4563 0.1688 0.265 0.6088 0.3389 0.1952 0.1878

EqualLightGCN 0.7533 0.4562 0.1689 0.265 0.6083 0.3388 0.1951 0.1877

JGCF 0.7811 0.4822 0.1863 0.2823 0.6279 0.3513 0.2054 0.1971

EqualJGCF 0.7811 0.4822 0.1863 0.2823 0.6279 0.3513 0.2054 0.1971

LightGCL 0.7303 0.447 0.1592 0.2539 0.6295 0.3676 0.205 0.2018

EqualLightGCL 0.7301 0.4471 0.1593 0.254 0.6295 0.3648 0.2064 0.202

2.3 GNN-based Recommender Systems
GNN-based recommender systems can learn more powerful node

embeddings by mining collaborative signals from high-order neigh-

bors. NGCF [20] is designed based on the standardGCN architecture.

LightGCN [10] simplifies NGCF by removing the weight matrices

and the activation function in each layer. This simplification leads

to a more efficient and less complex model while still capturing

the essential elements of user-item interactions in recommender

systems. Formally, the embedding calculation in LightGCN can be

represented by:

E =
1

𝐿 + 1

𝐿∑︁
ℓ=0

E(ℓ ) =
1

𝐿 + 1

𝐿∑︁
ℓ=0

PℓE(0) (4)

where 𝐿 is the number of layers, and P = D− 1

2AD− 1

2 is the propaga-

tion matrix. The final embedding matrix E is computed by aggregat-

ing the embeddings across all layers. E(0) is the initial embedding

matrix, which stands out as the sole parameter matrix of LightGCN

and serves as the foundational embeddings to derive subsequent

layer embeddings E(ℓ ) . Specifically, the embedding matrix of each

layer ℓ ∈ {1, · · · , 𝐿} is computed by E(ℓ ) = PE(ℓ−1) = PℓE(0) . The
iterative application of P effectively captures information at differ-

ent neighborhood scopes within the graph. To achieve enhanced

recommendation performance, several studies introduce polyno-

mial graph filters [9] and graph contrastive learning [2, 23, 25].

The success of graph collaborative filtering can be attributed to

their effective implementation of low-pass filtering. JGCF utilizes

Jacobi polynomial bases to approximate graph signal filters, facili-

tating efficient frequency decomposition and signal filtration. As a

result, JGCF enables distinct modeling of low and high-frequency

signals, combining the effects of low-frequency (E𝑙𝑜𝑤 ) and mid-

frequency (E𝑚𝑖𝑑 ) signals to produce the final embeddings E =

𝑐𝑜𝑛𝑐𝑎𝑡 (E𝑙𝑜𝑤 , E𝑚𝑖𝑑 ). The low-frequency signal E𝑙𝑜𝑤 is derived by

summing up 𝐿 embeddings:

E𝑙𝑜𝑤 =
1

𝐿 + 1

𝐿∑︁
ℓ=0

J𝑎,𝑏
ℓ

(P)E(0) , (5)

where J𝑎,𝑏
ℓ

(𝑥) represents the Jacobi basis, defined by:

J𝑎,𝑏
ℓ

=


1, ℓ = 0

𝑎−𝑏
2

+ 𝑎+𝑏+2
2

𝑥, ℓ = 1(
𝜃ℓ𝑧 + 𝜃 ′ℓ

)
J𝑎,𝑏
ℓ−1 (𝑥) − 𝜃 ′′

ℓ
J𝑎,𝑏
ℓ−2 (𝑥), ℓ ≥ 2,

(6)

and

𝜃ℓ =
(2ℓ + 𝑎 + 𝑏) (2ℓ + 𝑎 + 𝑏 − 1)

2ℓ (ℓ + 𝑎 + 𝑏) ,

𝜃 ′ℓ =
(2ℓ + 𝑎 + 𝑏 − 1)

(
𝑎2 − 𝑏2

)
2ℓ (ℓ + 𝑎 + 𝑏) (2ℓ + 𝑎 + 𝑏 − 2) ,

𝜃 ′′ℓ =
(ℓ + 𝑎 − 1) (ℓ + 𝑏 − 1) (2ℓ + 𝑎 + 𝑏)

ℓ (ℓ + 𝑎 + 𝑏) (2ℓ + 𝑎 + 𝑏 − 2) ,

(7)

where 𝑎 > −1 and 𝑏 > 1 are parameters to control the signal filter.

The mid-frequency signals are obtained by calculating E𝑚𝑖𝑑 =

𝑡𝑎𝑛ℎ(𝛽E(0) − E𝑙𝑜𝑤)), where 𝛽 is a weighting factor that modulates

the impact of low and high-frequency components.

To mitigate the issue of sparse information in recommender sys-

tems, some work has introduced contrastive learning to improve

the performance of recommendations. The core principle of con-

trastive learning involves modifying the original graph structure to

produce a new set of representation vectors from the augmented

graph. The goal is to align these newly generated vectors with those

derived from the original graph, while simultaneously distancing

the vectors of dissimilar nodes from one another. LightGCL [2] uti-

lizes singular value decomposition and reconstruction to guide data

augmentation. Firstly, singular value decomposition is performed

on the interaction matrix R to obtain R = UQV⊤
, where U / V is

a |𝑈 | × |𝑈 |/|𝐼 | × |𝐼 | orthogonal matrix and Q is a diagonal matrix

storing the singular values of R. The principal components of a

matrix are usually associated with top-𝑘 singular values, so Light-

GCL utilizes top-𝑘 singular values and singular vectors to construct

the perturbed interaction matrix R̂. The perturbed neighbor matrix

P̂ = [[0, R̂], [R̂⊤, 0]] is then substituted into Equation 4 to obtain

the perturbed embedding:

Ê =

𝐿∑︁
ℓ=0

Ê(ℓ ) ,

Ê(ℓ ) = P̂ · E(ℓ−1) ,

(8)

where E(ℓ−1) denotes unperturbed embedding of the previous layer,

and Ê(0) is set as E(0)
. The

1

𝐿+1 is omitted because LightGCL em-

ploys the sum function for aggregation instead of the mean.

These GNN-based recommender systems have achieved promis-

ing results, but also face challenges in scalability. The increase in

the number of users and items in the recommender system causes

the graph size to grow rapidly, which makes it difficult to train

GNNs efficiently. On the other hand, these models explicitly learn

an embedding 𝒆 ∈ R𝑑 for each user and item, which causes the
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parameter size of the model to become very large E ∈ R𝑛∗𝑑 , es-
pecially in systems with a large number of users and items. This

not only leads to high computational resource demands, but also

risks model convergence issues or overfitting. Overall, scalability re-

mains an open research challenge for applying GNNs to large-scale

recommender systems with many users and items.

3 EQUIVALENCE BETWEEN LIGHTGCN AND
DECOUPLED GNNS

Though LightGCN [10] and decoupledGNNmodels such as SGC [22],

AGP [19] and PPRGo [1] all aim to simplify GNNs, they take differ-

ent approaches to achieving this. As mentioned earlier, LightGCN

simplifies GCN models by removing the weight matrices and non-

linear activation functions in each layer. It aggregates neighbor

embeddings and uses the weighted sum of embeddings at each

layer to form the final embeddings. This simplification focuses on

reducing the complexity of each layer of the graph convolution and

how the layers are combined. In contrast, decoupled GNN mod-

els [19, 22] simplify GNN computation by decoupling the feature

propagation from the model training. This decoupling allows for a

more efficient feature propagation process, which can be achieved

through the pre-computing or constraining of propagation steps.

For example, SGC [22] employs a single propagation step while

AGP [19] pre-computes Personalized PageRank vectors. Therefore,

in terms of model architecture, the relationship between LightGCN

and decoupled GNNs is:

• LightGCN can be seen as a simplified decoupled GNN. It removes

weight matrices and nonlinear functions, simplifying the graph

convolutions of each layer into sequential linear transformations.

This is consistent with decoupled GNNs.

• However, LightGCN is not entirely decoupled, as it requires ag-

gregation of node representations at each layer.

Observation 1. In terms of embedding learning and model
parameters, LightGCN serves as a specialized form of decou-
pled GNN, where the input feature matrix is set as an identity
matrix.

While LightGCN is not fully decoupled, from the perspective of

parameter and embedding learning, it is equivalent to a decoupled

GNN. This can be easily proved. If we set𝑤ℓ in Equation 3 to 1/(𝐿+
1), and X = I, where I denotes an 𝑛 × 𝑛 identity matrix, then Equa-

tion 3 can be written as Z = 1/(𝐿+1)∑𝐿
ℓ=0 P

ℓ I. Substituting this into

the embedding calculation gives E = ZW = 1/(𝐿 + 1)∑𝐿
ℓ=0 P

ℓ IW ,

which is the same as Equation 4, where E(0)
corresponds to the

parameter matrixW in decoupled GNNs. This observation aligns

perfectly with the statement in recommender systems that the IDs
of users and items are used as input features. In these systems,

users and items have no actual features beyond their IDs, equivalent

to a one-hot encoding input. This is analogous to decoupled GNNs

with an identity matrix as the feature matrix.

Based on Observation 1, we found that in LightGCN, the com-

putations for multi-layer graph convolutions can be pre-computed

by utilizing the decoupled GNN model architecture. This strategy

𝐙(ℓ) = 𝑓(𝐏ℓ)𝐗 𝐙 =𝑤ℓ𝐙
(ℓ) 𝐄 = 𝑔(𝐙)

𝒆௨

𝒆

𝒆

𝑦ො௨

𝑦ො௨

𝐿ୖ

Graph Feature Propagation Model Training

users items

Figure 1: An overview of the decoupled framework for graph-
based recommendation.

circumvents the need for computationally intensive aggregation

operations at each layer. Similarly, the multi-layer graph convolu-

tion computations in JGCF [9] and LightGCL [2] can also be pre-

computed, utilizing the identity feature matrix. To further validate

this observation, we conducted a comparison between the original

model and its equivalent decoupled GNN version (EqualRecs) on

two datasets: MovieLens-1M and LastFM. All Equal models em-

ploy the identity matrix precomputation. As shown in Table 1, the

experimental results demonstrate that decoupled Equal-X models

achieve comparable performance to the original models. It means

that we can further improve the efficiency of LightGCN-based rec-

ommendation models by applying precomputation techniques.

4 THE LIGHTER-X METHOD
The primary goal of Lighter-X is to reduce the parameter count of

the recommendationmodel. According to Equation 3, the parameter

size of GNN depends on the size of the input features. Taking a

single-layer simple MLP as an example, in E = ZW, the size of

the weight matrix W is ℎ ∗ 𝑑 , where ℎ is the dimension of the

features on each node 𝑣 ∈ 𝑉 , and 𝑑 represents the dimension of the

output representation vector. In LightGCN, the feature matrix X is

an identity matrix of dimension 𝑛 × 𝑛 , and the corresponding W
matrix needs to be of size 𝑛 × 𝑑 , which is discussed in Section 3.

However, the size of the learnable weight matrix being directly

related to the number of samples𝑛 does not conform to the common

principles of machine learning. This limits the model’s ability to

generalize to unseen data and severely restricts the model’s training

on large datasets. In order to reduce the scale of W, we propose

to use a low-rank matrix instead of the identity feature matrix,

which can naturally reduce the number of model parameters to

ℎ × 𝑑 , where ℎ ≪ 𝑛 . Therefore, the problem has transformed into

finding an appropriate low-rankmatrix.What, then, is the proper
low-rank matrix?
A potential ideal solution. Singular Value Decomposition (SVD)

is a common and effective method to obtain a low-rank matrix

representation. In SVD-GCN [15], the identity feature matrix is

replaced by the top-k singular values of interaction matrix R and

the corresponding singular vectors. This is equivalent to extracting

themain features through an all-pass filter after performing the SVD

decomposition of R. Consequently, truncated SVD decomposition

stands as a potentially optimal top-𝑘 approximation method for

selective feature filtering, yet it remains computationally intensive.

Efficiently computing SVD decomposition on large-scale graphs is

still a challenging and unresolved problem [5].

Random sampling approximation: a low-cost compromise
solution. A widely adopted approach for swiftly computing SVD

is Randomized Singular Value Decomposition (RSVD). In its initial
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phase, RSVD applies dimensionality reduction to the input ma-

trix through multiplication with a random matrix. This expedited

preliminary reduction of dimensions facilitates a more efficient

computation of SVD. By employing a random sampling technique,

this method approximates the feature space of the original matrix,

thereby enhancing computational efficiency while maintaining a

high level of accuracy. Therefore, we believe that random sampling

is a promising approach for accelerating convolutional operations

through effective dimensionality reduction at an early stage in the

network. On the other hand, in recommendation systems, data is

usually very sparse, and traditional data processing and analysis

methods may encounter inefficiency issues [8]. Employing random

matrices for rapid dimensionality reduction provides an effective

solution. According to compressed sensing theory, even when data

is significantly compressed, as long as the signal possesses sparse

characteristics, it is possible to accurately reconstruct the original

signal from a small number of observations through optimization

algorithms [7]. In other words, the compressed matrix can retain

sufficient core features of the data.

Based on these observations, we construct a viable input feature

matrix X = P · S through random sampling in a cost-effective

manner, where S ∈ R𝑛×ℎ is a random matrix. Since the user-item

interactions in recommendation systems can be represented as

a bipartite graph, the corresponding P matrix is a block matrix.

Therefore, the input feature matrix X is expressed as:

X =

[
0 |𝑈 | B
B⊤ 0 |𝐼 |

] [
0 |𝑈 | S2
S1 0 |𝐼 |

]
, (9)

where 0𝑛 is a zero matrix of dimension 𝑛 × 𝑛, B = D
− 1

2

𝑢 RD
− 1

2

𝑖
, D𝑢

and D𝑖 represent the diagonal degree matrix of users and items,

respectively. S1 / S2 is a |𝑈 | × ℎ1 / |𝐼 | × ℎ2 random matrix used to

compress the matrices R and R⊤, respectively.
To ensure sampling quality, we follow a rigorous theoretical

basis for reconstructing sparse signals, known as the Restricted

Isometry Property (RIP), to design suitable random matrices. This

usually involves the selection of specific types of random matrices

(e.g., Gaussian random matrices, Bernoulli random matrices, etc.)

that have been shown theoretically and empirically to be able to

satisfy the RIP condition:

(1 − 𝛿)∥𝒑∥2 ≤ ∥S · 𝒑∥2 ≤ (1 + 𝛿)∥𝒑∥2, (10)

where 𝒑 is a row in the matrix B/B⊤ representing the sparse signal

vector of user 𝑢 ∈ 𝑈 /𝑖 ∈ 𝐼 . In addition, the RIP constrains the

dimension of the random matrix to be related to the sparsity of the

data. Assuming 𝑟 represents sparsity, the dimension of the random

matrix ℎ should satisfy:

ℎ = 𝑐 · 𝑟 log(𝑛/𝑟 ), (11)

where 𝑐 is a constant. Compressed Sensing established that a noise-

free signal and a sampling matrix S that satisfies RIP can achieve

zero error in recovery (complete recovery). In practice the recov-

ery process can be solved by the Basis Pursuit algorithm [3, 4].

This guarantees that the sampled signals (X = PS) preserve the
information from the original signal matrix, and indicates that in

our formulation, the sampled signals BS1 and B⊤S2 fully capture

the noise-free B and B⊤ matrices when S1 and S2 both satisfy RIP.

Therefore, the resulting low-rank sampled signals could retain suf-

ficient key information from the user-item interaction matrix to

support subsequent recommendation tasks.

Decoupled framework for graph-based recommendation. The
coupled model structure is another important factor that limits the

scalability of traditional GCN [12] and LightGCN [10]. Specifically,

these models usually require convolutional operations to be car-

ried out on the entire graph, which is computationally costly on

large-scale graphs. Specifically, these models typically require that

convolutional operations be performed on the entire graph, which

is computationally expensive and not easily achievable on large-

scale graph data. A series of studies [1, 19, 22] have proposed to

improve the scalability of GCNs by decoupling feature propagation

from training process in the original model, allowing the computa-

tionally intensive convolution operations to be pre-computed. This

implies that the model executes the costly and time-consuming

operation just once and obviates performing expensive convolution

computations repeatedly during the training process, markedly en-

hancing the scalability of traditional GCNs. Therefore, we propose

to construct graph-based recommendations based on the decou-

pling framework, as shown in Fig 1. In the feature propagation stage,

we complete the convolution related operation and obtain the fea-

ture propagation matrix Z. The subsequent neural network takes Z
as input and is trained to generate the final user and item embed-

dings. This training process is commonly guided by the Bayesian

Personalized Ranking (BPR) loss.

4.1 LighterGCN
LighterGCN employs the aforementioned low-rank approximation

and decoupling framework to obtain the final embedding matrix.

Formally, the way LighterGCN learns embeddings by:

E = 𝑀𝐿𝑃 (Z) = 𝑀𝐿𝑃 (
𝐿∑︁
ℓ=0

𝑤ℓZ(ℓ ) ),

Z(ℓ ) = PℓX,

(12)

where X is the random sampling result obtained Equation 9, and

its rank ℎ is much smaller than the number of nodes 𝑛. Based on

this low-rank input feature matrix X, LighterGCN performs graph

convolutional operations to obtain the feature propagation matrix

Z. Finally, we train an MLP to get the final embedding E. There-
fore, LighterGCN successfully reduces the number of parameters

from the original 𝑂 (𝑛𝑑) to 𝑂 (ℎ𝑑), where ℎ ≪ 𝑛, and improves

computational efficiency significantly.

4.2 Polynomial-based collaborative filtering
Spectral-based methods define graph convolution by introducing

filters from the graph signal processing perspective, where graph

convolution operations are interpreted as removing noise from

graph signals. Polynomial-based graph collaborative filtering is

equivalent in form to applying different polynomial bases to com-

pute the aggregation weights for each convolutional layer, such

as using Jacobi polynomial bases in JGCF [9]. Under the Lighter-X

framework, we can naturally incorporate polynomial-based GCF

by aggregating the propagation matrix Z based on different poly-

nomial bases. This allows leveraging the representational power
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Table 2: The comparison of time complexity between baseline and proposed models. 𝑛,𝑚, |𝑈 | and |𝐼 | represent the number of
nodes, edges, users and items, respectively. 𝐵 represents the batch size, 𝑛𝐵 denotes the number of nodes in a batch, 𝐿 is the
number of layers in the model, 𝑑 refers to the embedding size, ℎ is the dimension of the feature matrix, and 𝑞 is the required
rank. 𝑇 denotes the number of iterations in training and is equal to𝑚train/𝐵, where𝑚train is the number of training samples.

Stage Computation LightGCN JGCF LightGCL LighterGCN LighterJGCF LighterGCL

Pre-processing
Normalization 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚) 𝑂 (2𝑚)

SVD - - 𝑂 (𝑞𝑚) - - 𝑂 (𝑞𝑚)
Graph

Convolution

- - - 𝑂 (2𝑚𝐿ℎ) 𝑂 (2𝑚𝐿ℎ) 𝑂 (2𝑚𝐿ℎ +
2𝑞𝑛𝐿ℎ)

Training One Batch

𝑡conv: Graph

Convolution

𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑+2𝑞𝑛𝐿𝑑) 𝑂 (3𝐵ℎ𝑑) 𝑂 (3𝐵ℎ𝑑) 𝑂 (3𝐵ℎ𝑑+𝑛𝐵ℎ𝑑)

𝑡
bpr

: BPR Loss 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑)
𝑡
ssl
: InfoNCE

Loss

- - 𝑂 (𝐵𝑑 + 𝐵𝑛𝐵𝑑) - - 𝑂 (𝐵𝑑 + 𝐵𝑛𝐵𝑑)

Total (𝑡conv + 𝑡
bpr

+ 𝑡
ssl
)𝑇

Inference
Graph

Convolution

𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑) 𝑂 (2𝑚𝐿𝑑) 𝑂 (𝑛ℎ𝑑) 𝑂 (𝑛ℎ𝑑) 𝑂 (𝑛ℎ𝑑)

Calculate

Scores

𝑂 ( |𝑈 | |𝐼 |𝑑) 𝑂 ( |𝑈 | |𝐼 |𝑑) 𝑂 ( |𝑈 | |𝐼 |𝑑) 𝑂 ( |𝑈 | |𝐼 |𝑑) 𝑂 ( |𝑈 | |𝐼 |𝑑) 𝑂 ( |𝑈 | |𝐼 |𝑑)

of varied bases while precomputing the aggregations to reduce

computational complexity.

LighterJGCF. We use a low-rank random matrix as input fea-

tures and precompute polynomial features of each level. The pre-

computed results are then fed into the subsequent MLP to learn the

final embeddings of users and items. Specifically, we utilize the low-

rank feature matrix X and the decoupled framework introduced in

Section 4.1 to reformulate Equation 5 into the following form:

E𝑙𝑜𝑤 = 𝑀𝐿𝑃 (Z) = 𝑀𝐿𝑃 (
𝐿∑︁
ℓ=0

𝑤ℓZ(ℓ ) ),

Z(ℓ ) = J𝑎,𝑏
ℓ

(P)X.

(13)

Similarly, we obtain E𝑚𝑖𝑑 = 𝑡𝑎𝑛ℎ(𝛽𝑀𝐿𝑃 (X) − E𝑙𝑜𝑤). Taking a

single-layer simple MLP as an example, the dimension of the model

parameter matrix is ℎ × 𝑑 , which is much smaller than the scale of

the JGCF model (𝑛×𝑑), since X is a low-dimensional feature matrix.

In addition, the polynomial basis functions can be pre-computed to

speed up the process of graph convolution.

4.3 GCL for recommendation
The core of GCL for recommendation lies in obtaining a perturbed

adjacencymatrix Â through different data augmentation techniques

and substituting it into the embedding formula to derive the cor-

responding perturbed embedding. For example, LightGCL [2] em-

ploys truncated SVD to obtain Â. Within the Lighter-X framework,

we can adopt the same precomputation approach to acquire the

perturbed propagation matrix Ẑ, and similarly gain the perturbed

embedding matrix. This improves the computational efficiency of

GCL-based recommendation models.

LighterGCL. Since LightGCN forms the foundation of LightGCL’s

embedding learning, its parameter scale is𝑛×𝑑 , equivalent to that of
LightGCN. Therefore, we make LighterGCL have LighterGCN as its

backbone to get the embedding E, which also has a parameter scale

of ℎ × 𝑑 and is much smaller than LightGCL. To further increase

Table 3: The statistics of datasets.

Dataset #User #Item #Interaction Sparsity
LastFM 1,892 17,632 92,834 99.72%

MovieLens-1M 6,040 3,952 1,000,209 95.81%

MovieLens-20M 138,493 27,278 20,000,263 99.47%

Yelp-2018 31,668 38,048 1,561,406 99.87%

Alimama 884,607 9,824 5,818,903 99.93%

HuaweiAds 1,692,592 25,158 3,504,103 99.99%

the efficiency and scalability of the model, we can pre-compute

the perturbation component Ẑ in LighterGCL by using the low-

rank input matrix X. Specifically, we precompute the perturbed

representations Ẑ(ℓ )
of each layer utilizing the perturbed adjacency

matrix P̂ and input features X, which is a low-rank random matrix.

The perturbed embeddings are then obtained by aggregating the

pre-computed Ẑ(ℓ )
and feeding it into MLP for training:

Ê = 𝑀𝐿𝑃 (Ẑ) = 𝑀𝐿𝑃 (
𝐿∑︁
ℓ=0

𝑤ℓ Ẑ(ℓ ) ),

Ẑ(ℓ ) = P̂ · Pℓ−1X.

(14)

where Ẑ(0) = X. As a result, the repetitive perturbation genera-

tion computation in conventional approaches is circumvented by

employing the low-rank feature matrix X and decoupling frame-

work in LighterGCL. This substantially diminishes the time and

space complexity of LighterGCL, rendering it more appropriate for

scenarios involving large-scale graph learning.

4.4 Analysis
GNN-based recommendation models typically suffer a significant

computational cost as a result of the requirement to execute con-

volution operations on the complete graph repeatedly during the

training stage. In contrast, we decouple the costly feature propa-

gation from the training process, enabling models to pre-compute

the convolutional operations. This avoids repetitive computations
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Table 4: Performance comparison at public datasets, metric@10 is presented.

Dataset LastFM MovieLens-1M MovieLens-20M Yelp2018
recall ndcg #params recall ndcg #params recall ndcg #params recall ndcg #params

Base
Models

LightGCN 0.1952 0.1878 2.50M 0.1688 0.265 1.25M 0.2129 0.273 21.15M 0.0560 0.0450 4.46M
JGCF 0.2054 0.1971 2.50M 0.1863 0.2823 1.25M 0.2185 0.2804 21.15M 0.0687 0.0556 4.46M

LightGCL 0.205 0.2018 2.50M 0.1592 0.2539 1.25M 0.1172 0.1578 21.15M 0.0617 0.0496 4.46M

Lighter-X
LighterGCN 0.1946 0.1882 0.40M 0.1818 0.2731 0.19M 0.2108 0.278 1.70M 0.0566 0.0451 0.07M
LighterJGCF 0.2095 0.1952 0.40M 0.1883 0.2839 0.19M 0.2268 0.2882 1.70M 0.0694 0.0538 0.07M
LighterGCL 0.2059 0.2021 0.40M 0.1753 0.2642 0.19M 0.1688 0.2217 1.70M 0.0627 0.0497 0.07M
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Figure 2: Time cost per epoch. The methods are denoted as follows: (a) LightGCN, (b) JGCF, (c) LightGCL, (d) LighterGCN, (e)
LighterJGCF, and (f) LighterGCL.

throughout the training stage and significantly improves the effi-

ciency. As shown in Table 2, we compare the model’s preprocessing,

per-batch training complexity, total training complexity, and infer-

ence complexity against baseline models.

Compared with the original model, although Lighter-X needs

to perform Graph Convolution in the preprocessing stage, it only

needs to be performed once. In contrast, baseline methods need to

repeat the convolution of the whole graph in each training batch.

Therefore, Lighter-X enhances training efficiency by pre-computing

graph convolutions, thereby eliminating repetitive computations

and significantly reducing the computational cost.

Additionally, the remarkable theoretical foundation and per-

formance that are intrinsic to the base model are maintained by

Lighter-X. For example, JGCF [9] improves recommendation per-

formance without increasing the time complexity by integrating

polynomial functions. LighterJGCF attentively maintains this char-

acteristic, guaranteeing that its computational requirements do

not surpass those of LighterGCN while attaining exceptional rec-

ommendation results. Similarly, LighterGCL incorporates graph

augmentation to produce more robust embeddings. This is achieved

without the necessity for synthetic graph generation to facilitate

explicit data augmentation, inheriting from the efficiency charac-

teristics of LightGCL [2].

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We conduct experiments on six different datasets. (1)

LastFM contains the listening history of users on the Last.fm online

music system. (2)MovieLens-1M and (3)MovieLens-20M contain

movie rating data from the MovieLens website, with each record

reflecting a user’s rating for a particular movie. (4) Yelp2018 is

collected from users’ reviews of merchants on Yelp
1
. (5) Alimama

contains user behaviors on taobao.com platform
2
. We construct

interaction graphs using users’ purchase relationships with product

1
https://www.yelp.com/

2
https://tianchi.aliyun.com/dataset/56

categories. (6) HuaweiAds is a dataset containing around 3.5 mil-

lion users’ behaviors toward the advertisements shown on Huawei

devices (mobile phone, HuaweiPad, etc). It collects a 2-hour click

log from one day in 2023. Table 3 summarizes the statistics of above-

mentioned dataset.

Baselines. We regard three representative models LightGCN [10],

JGCF [9] and LightGCL [2] as important baseline methods and

conduct a comprehensive comparison of their performance and

training efficiency against Lighter-X. Furthermore, we evaluate our

models against other recommendation systems, including BPR [16],

NeuMF[11], NGCF [20], DGCF [21], GDE [14], GTN [6], RGCF [17],

and DirectAU [18], on the Yelp2018 dataset.

Implementation Details. For all baselines and our proposed meth-

ods, we implement using RecBole [26, 27], an open-source recom-

mendation algorithm framework, and set hyperparameters based

on their suggestions. All methods are optimized with Adam and

initialize model parameters using the Xavier distribution. To ensure

a fair comparison, we standardize the embedding size across all

methods: 64 for Yelp2018 to align with other baselines, 32 and 64

for HuaweiAds to support business processing needs, and 128 for

all other datasets. For Lighter-X, we direct the configuration of the

input random matrix based on RIP theory, and 𝑐 is turned in [1, 10].

5.2 Experiments on Public Datasets
Evaluation Protocols. In this experiment, for each user, we ran-

domly select 80% and 10% of her interactions as the training and

validation sets, while the others are left for testing. We use Re-

call and NDCG as the evaluation metrics and let the recommender

models generate 10 items to compare with the ground truth.

Effectiveness. The overall performances of our framework against

different base models are presented in Table 4. We can see, our

framework can achieve comparable or even better performances

than the base model across all the evaluation metrics and datasets.

These results are encouraging, since our framework has much

fewer parameters, whichmay demonstrate that, in traditional graph-

based recommender models, a large number of parameters could be

redundant and useless in terms of improving performance. Usually,

recommender systems need to handle a large amount of real-time

https://www.yelp.com/
https://tianchi.aliyun.com/dataset/56
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Table 5: Performance comparison on Yelp2018 dataset.

Method recall@𝑘 ndcg@𝑘

𝑘=10 𝑘=20 𝑘=10 𝑘=20

BPR 0.0452 0.0764 0.0355 0.0460

NeuMF 0.0313 0.0548 0.0235 0.0316

NGCF 0.0459 0.0778 0.0364 0.0472

DGCF 0.0527 0.0856 0.0419 0.0528

LightGCN 0.0560 0.0913 0.0450 0.0569

GDE 0.0483 0.0808 0.0383 0.0493

GTN 0.0603 0.0984 0.0483 0.0611

RGCF 0.0633 0.1026 0.0503 0.0637

DirectAU 0.0557 0.0907 0.0435 0.0553

JGCF 0.0687 0.1105 0.0556 0.0694

LighterJGCF 0.0694 0.1109 0.0538 0.0699

Table 6: Performance comparison on Alimama dataset.

Method recall@𝑘 ndcg@𝑘
#params

𝑘=10 𝑘=20 𝑘=10 𝑘=20

LightGCN 0.172 0.196 0.1538 0.1607 114.49M
JGCF OOM OOM OOM OOM 114.49M

LightGCL 0.1889 0.2526 0.1231 0.1413 114.49M
LighterGCN 0.2162 0.2855 0.1488 0.1684 0.09M
LighterJGCF 0.2241 0.298 0.1538 0.1749 0.09M
LighterGCL 0.1967 0.2557 0.1415 0.1583 0.09M

data, which requires high training and inference speed. The above

experiments demonstrate that our lightweight framework holds

great promise to achieve this goal. At last, our framework serves as

an efficient plug-and-play strategy, which makes it more flexible

and practical in real-world scenarios.

Efficiency. In the above experiments, we demonstrate the effec-

tiveness of our framework. A more significant advantage of our

framework is its efficiency. In this experiment, we analyze the time

cost of our framework in the training and inference phases. To

evaluate the cost, we compare our framework with different base

models for training one epoch. As shown in Figure 2, our frame-

work can greatly reduce the time cost as compared with the base

model. For example, on the MovieLens-20M dataset, the training

time of LighterGCN is about 1/6 of LightGCN’s. This result verifies

the potential of our framework for efficient model training, which

is crucial for practical recommender systems.

Performance comparison with other models.We benchmark

the proposed LighterJGCF against other leading recommendation

algorithms on the Yelp2018 dataset, as shown in Table 5. Optimized

from JGCF, the prevailing state-of-the-art approach, LighterJGCF

attains superior performance across all metric evaluations.

5.3 Online Experiments
Evaluation Protocols. Beyond the above experiments on public

datasets, we also demonstrate the superiority of our framework

in two real-world product environments including Alimama and

HuaweiAds datasets. In specific, the Alimama dataset is divided

into training, validation, and testing sets in an 8:1:1 ratio based on

timestamps. The HuaweiAds dataset extracts the last interaction

item of each user to form the testing set, while the others are used

for training. The other settings follow the above experiments.

Table 7: Performance comparison on HuaweiAds dataset. 𝑑
is the embedding size.

Setting Method recall@𝑘
#param

𝑘=1 𝑘=3 𝑘=5 𝑘=10

𝑑=32
LightGCN 0.1218 0.1724 0.1974 0.2352 54.97M
LighterGCN 0.1418 0.1963 0.2163 0.2425 0.98M

𝑑=64
LightGCN 0.1248 0.1792 0.2066 0.2483 109.94M
LighterGCN 0.1541 0.2134 0.2316 0.2524 0.99M
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Figure 3: Total Running Time Comparison.
Effectiveness. Tables 6 and 7 show the experimental results on

the Alimama and HuaweiAds datasets, respectively. We found that

the model needs extra space to save the intermediate results since

each ℓ-th (ℓ ≥ 2) layer of the JGCF needs to be computed based

on the embedding of the first two layers, and thus suffers from

the out-of-memory (OOM) problem on the Alimama dataset. How-

ever, LighterJGCF pre-computes this computation before training,

eliminating the need for repeatedly allocating additional storage

space during the training phase. We notice that the parameter scale

reaches 114.49 million for LightGCN on the Alimama dataset and

109.04 million on the HuaweiAds dataset (𝑑=64). However, with

just 0.09 million parameters on the Alimama dataset, which is only

0.8% of the base model’s parameters, Lighter-X achieves even better

performance. Similarly, on the HuaweiAds dataset, LighterGCN at-

tains superior performance while using just 1-1.7% of the parameter

quantity of LightGCN, which agrees with the above experiments.

Efficiency. In Figure 3, we compare the running time of different

models based on the Alimama andHuaweiAds datasets, respectively.

We can see that the time cost of the base model is significantly

lowered by applying our framework to it. For example, on the

HuaweiAds dataset, Lighter-X reduces the total runtime by about

70% compared to the baseline of LightGCN. This further validates

that Lighter-X can significantly accelerate training on industrial-

scale datasets.

6 CONCLUSION
In this paper, we propose an efficient and plug-and-play strategy

Lighter-X. With random sampling and decoupling frameworks,

Lighter-X can significantly reduce the number of parameters and

computational complexity of traditional models, which improves

the training efficiency and makes it easier to be applied to large-

scale real recommender systems. Based on LightGCN, we con-

structed the scalable LighterGCN model. We also demonstrate the

generalization ability of the framework on filtering collaborative

filtering and graph contrastive learning. Extensive empirical eval-

uation demonstrates that Lighter-X can effectively reduce the pa-

rameter size and improve the efficiency of existing recommender

models, while still achieving comparable performance.
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