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ABSTRACT
Embedding-based retrieval in graph-based recommendation has
shown great improvements over traditional graph walk retrieval
methods, and has been adopted in large-scale industry applications
such as friend recommendations [16]. However, it is not without its
challenges: retraining graph embeddings frequently due to chang-
ing data is slow and costly, and producing high recall of approximate
nearest neighbor search (ANN) on such embeddings is challenging
due to the power law distribution of the indexed users. In this work,
we address theses issues by introducing a simple query expansion
method in ANN, called FriendSeedSelection, where for each node
query, we construct a set of 1-hop embeddings and run ANN search.
We highlight our approach does not require any model-level tuning,
and is inferred from the data at test-time. This design choice effec-
tively enables our recommendation system to adapt to the changing
graph distribution without frequent heavy model retraining. We
also discuss how we design our system to efficiently construct such
queries online to support 10k+ QPS. For friend recommendation,
our method shows improvements of recall, and 11% relative friend
reciprocated communication metric gains, now serving over 800
million monthly active users at Snapchat.
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1 INTRODUCTION
In online social network applications, users build their list of friends
based on their real life connections. App features like LinkedIn’s
People You May Know (PYMK)[2] and Snapchat’s QuickAdd[16]
serve a list of relevant friend recommendations to whom they be-
lieve the user is already connected outside the app. A typical friend
recommendation pipeline can be broken into retrieval and ranking
stages, where candidates are funneled down from 100k -> 10k ->
100. In the retrieval stage, the goal is to generate as many potential
friends as possible, typically using a mix of machine learning mod-
els and graph walk methods[3, 4, 16]. Retrieval plays a particularly
important part because the ability to fetch relevant candidates, i.e.
recall of real-life friends, directly ties to better ranking results, and
thus user’s positive in-app engagements and retention.

Recently, embedding-based retrieval (EBR)[7] has demonstrated
strong recall quality in search recommendation. Subsequent works
showed EBR provides improvements over traditional graph walk
techniques (e.g. fetching friends of friend as suggestions), and
adopted in production in large-scale industrial social network ap-
plications [2, 16]. For friend recommendations, the process of EBR
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consists of training user embeddings using deep neural networks on
the user-friend graph[6, 11]. Given the indexed user embeddings, we
retrieve relevant results by running an approximate nearest neigh-
bor (ANN) search on the query embedding. One notable challenge
to EBR in social network applications is the power-law distribution
of the user node degrees [15]. Most users in the training set have
sparse connections and edge properties during the training time.
Additionally, a user’s friends may be grouped into multiple social
circles [13]. For example, a user 𝑢 may have friends that belong
to two separate social circles 𝑐1 and 𝑐2. The friends in 𝑐1 may not
have mutual connections to friends in 𝑐2. Also, the friends in 𝑐1
have significantly different user behavior patterns than those in
𝑐2. Jointly learning on the friendship and interaction graphs of
these users would bring 𝑢’s embedding and 𝑢’s friends embeddings
closer. However, in practice, we want to be able to discern candi-
dates across social circles so the retrieved candidates can cover as
many user’s social circles as possible. This challenge is akin to the
problem of multi-modal user representation in a typical user-item
recommender system [14]. Methods like PinnerSAGE [14] showed
that using multiple embedding to represent user outperforms single
vector representation in item recall and precision metrics.

Taking a multi-embedding perspective, we propose a simple
post-training step, FriendSeedSelection, to produce a multi-modal
user representation for ANN search, which can be implemented as
a query expansion step in retrieval systems. User representation
is constructed by sampling user’s 1-hop friends, and using their
respective embeddings. Importantly, our design is model agnostic
and does not require any model-level tuning. In other words, we
infer seeds directly from user data at test-time. This direct test-data
adaptation allows us to work with the change graph distribution
and reduces the frequency of cost-heavy model retraining. We also
highlight the feature engineering required to achieve better results,
due to the unique nature of graph-based recommendation. We show
that this method generates higher recall at retrieval stage, as well
as friending business metric improvements in a large industry scale
application serving 800 million monthly active users. This method
is currently in live production usage at Snapchat.

2 EMBEDDING-BASED RETRIEVAL AT
SNAPCHAT FRIENDING

Embedding-based retrieval (EBR) for friend recommendation ad-
dresses the limitations of graph-traversal approaches (e.g., friend-
of-friend) [16], namely (1) it is computationally expensive to fetch
2-hop candidates in small-world social graphs [10], (2) traversal
in cold start friend graph yields limited results, and (3) traversal
cannot easily incorporate connection strength or user behaviors.

At Snap, we have developed an embedding-based retrieval sys-
tem that learns a graph-based embedding for each user, leveraging
the corresponding user-user friendship graph containing rich in-
formation of user connections. The graph’s node attributes contain
individual user features, and edge attributes contain various user
to user interaction patterns. Since we optimize for the users with
similar interest and in close network proximity to be closer in the
embedding space as an objective, therefore we can address the
limitations of traversal in cold start user graph with approximate
nearest neighbor (ANN) search in embedding space, and the search

time complexity is constant, compared to traversal approaches that
are edge topology dependent.

We utilize graph neural networks (GNN) for learning user em-
beddings. We define the user graph by an attributed graph 𝐺 =

(𝑉 , 𝐸, 𝑋 ), where𝑉 denotes the node set with |𝑉 | = 𝑛, 𝐸 denotes the
edge set with |𝐸 | = 𝑚, 𝑋 ∈ R𝑛×𝑓 is the node embedding matrix.
Each node 𝑣𝑖 is a vector of user attributes, and each edge 𝑒𝑖, 𝑗 is a
vector of user-user interaction features. During training, we are
given a snapshot of 𝐺𝐷 of all nodes and edges that are present
at time period [𝐷 − 𝐿, 𝐷]. For each user pair (𝑢1, 𝑢2) we want to
predict whether the friend link is formed at time 𝐷 + 1.

For EBR, we employ a 2-layer GNN model with GAT convo-
lution as message passing layers [18]. Specifically, the 𝑘𝑡ℎ layer
embeddings are dependent upon the 𝑘 − 1𝑡ℎ layer embeddings via:

𝑥𝑘𝑖 = 𝑎𝑖,𝑖𝜃𝑥
𝑘−1
𝑖 +

∑︁
𝑗∈𝑁 (𝑖 )

𝑎𝑖, 𝑗𝜃𝑥
𝑘−1
𝑗

𝑎𝑖, 𝑗 = softmax(LeakyReLU(𝑎𝑇 [𝑥𝑘−1𝑖 | |𝑥𝑘−1𝑗 | |𝑒𝑘−1𝑖, 𝑗 ]))

The attention weights 𝑎𝑖, 𝑗 can be seen as soft attention between
node i and its 1-hop neighbors, where the attention weights are a
shared additive vector, computed by respective edge features and
node embeddings.

The model is training with contrastive loss [8], which is com-
puted as an in-batch negative sampling calculation of cross entropy
loss, similar to Tensorflow’s retrieval loss [1]. For more details
regarding the details of graph embedding model training and for-
mulation, please see [16].

3 METHODOLOGY
In a typical ANN search over an index of all user embeddings,
for a user query embedding vector 𝑥𝑖 , we perform approximate
embedding similarity search (e.g. product quantization [9] and
efficient navigation such as HNSW [12]). However, a drawback of
using purely user’s embedding vector is the potential information
loss trying to capture multiple social circles the user belongs to. We
want to ensure that the query can sufficiently represent the user’s
respective social circles to improve the coverage and diversity of
ANN search results.

We propose to instead use a set of embedding vectors to serve
as the multi-modal user representation in the ANN search. For
each searcher 𝑢, we span over all 1-hop bi-directional friends of 𝑢,
𝐹𝑢 . 𝐸𝑓 𝑢 ∈ R |𝐹𝑢 |×𝑒 denotes the corresponding embedding vectors
for 𝐹𝑢 , with embedding dimension 𝑒 . We propose a simple query
expansion step, FriendSeedSelection, as described below:

• Set ANN retrieval size 𝑅
• Sample 𝑘 seeds 𝑆𝑢 ∼ 𝐻 , where H is some distribution over
the edge features between searcher 𝑢 and their friends.
• ∀𝑠𝑖 ∈ 𝑆𝑢 , fetch seed 𝑠𝑖 ’s embedding 𝐸𝑓 𝑢 [𝑖], and find 𝑅/𝑘
nearest neighbors. Concatenate all neighbors as final result

We believe that each searcher’s friend embedding acts as an
approximate representation of the corresponding embedding of
the social circle both searcher and her friend belongs to, and can
hopefully act as an ensemble to improve the generalization of recall.
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Algorithm 1 Close Friend Seed Selection

Require: Searcher s, embedding lookup function 𝐸 (𝑢) → 𝑥𝑢 , seed
size 𝑘 , cluster input size 𝑛
𝑅 ← 𝑁𝑒𝑖 (𝑠) sorted by (1), 𝑅 ← 𝑅 [: 𝑛] ⊲ Close Friends Filtering
Run Ward clustering on the 𝐸 (𝑅) yielding 𝐶 = 𝑐1, .., 𝑐𝑛 cluster
assignment
∀𝑐𝑖 ∈ 𝐶, 𝑐𝑖 ∈ [0,𝐺]
𝑀 ← [] ⊲ Medoids assignment
for 𝑔 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝐺) do

𝑚 ←𝑚𝑒𝑑𝑜𝑖𝑑{𝑐𝑖∀𝑐𝑖 = 𝑔} wrt embeddings
𝑀 ← (𝑀,𝑚)

end for
Sort M by cosine similarity(E(s), E(m))
returnM

3.1 Seed Selection Strategies
Seed samples should be determined according to user-friend inter-
action behaviors. We mainly consider:

Recency of friendship: how recently the user makes a friend is
indicative of how likely the user will be interested to onboard
more friends from the underlying social circle they both belong to.
We denote the friendship recency feature as an indicator of edge
between user i, j, formed within window of [T-d, T]: 𝑚𝑡 (𝑖, 𝑗) =
𝐼 [𝑒 (𝑖, 𝑗) == 1].

Interaction frequency: on Snapchat, a user may view a friend’s
story, or engage in chat-related activities with friends. We represent
such activities in terms of count-based features and active-day based
features, where we look at chat-send, snap-send, story-viewing,
etc. as some of the valid activities. Active-day features denote how
many days users i and j have initiated the interaction between [T-d,
T]. Count-based features denote the interaction count in [T-d, T].

Based on the features, we describe several FriendSeedSelection
variants that leverage such features:
3.1.1 Stochastic EBR (V1). As a baseline, we generate random sam-
ples from 1-hop bi-directional friends as 𝑆𝑢 , and use the correspond-
ing friend embeddings in ANN search.
3.1.2 Location-based (V2). We rank friends using registered city
by geo-distance. Friends from similar locations are more likely to
interact in real life and have denser social circles.
3.1.3 Recency-based (V3). We sample 1-hop bi-directional friends
by linearly weighting recency of friend link formation:∑︁

𝑡 ∈𝑆
𝑎𝑡 ∗𝑚𝑡 (𝑖, 𝑗), 𝑆 = [𝑙1, 𝑙7, 𝑙14, 𝑙28]

For date D, the features are indicator variables of friends made
after D-1, D-7, D-14, and D-28, respectively.
3.1.4 Engagement strength-based Selection (V4). For user 𝑢’s 1-hop
friend, we score the friends using linear combination of interaction
features, which provides a measure of interaction strength. We
select 𝑑 nodes, 𝑁𝑑 from 1-hop friend as qualified seeds.

Next, we run hierarchical clustering on the embeddings of 𝑁𝑑 ,
which generates 𝑐 clusters. We rank the 𝑐 medoids by embedding
L2 distance to the user 𝑢’s embedding and return top 𝑘 medoids
as the finalized seed set for ANN. We describe the process more
formally in Algorithm 1.

For optimal online performance, we tune the clustering hyper-
parameters (e.g., dissimilarity threshold) such that the median em-
pirical cluster number is around 5 to 8.
3.1.5 Ensemble Seed Selection (V5). We combine V2+V3 as an en-
semble of seed selection strategies. Specifically, for the seed set size
of k, we sample k2 seeds with V2, and k3 seeds with V3, k2+k3=k.
This is a simple set union, and should help provide insight to see if
V2 and V3 offer complementary signals.

4 SYSTEM DESIGN
4.1 Offline Evaluation
For offline evaluation, we want to iterate and validate our model
architecture and embedding post-processing performance to align
with online performance. To this end, we designed an offline recall
evaluation framework, where we simulate embedding mapping and
query expansion process to create a dataset of multi-modal user
embeddings. We create two tables, Query and Label tables, using
BigQuery, to store ground truth and the simulated query set. For
each user, we pass the constructed query to an offline ANN index
server. For users queried at date𝐷 , we join the simulated suggestion
results with online log data collected at date 𝐷 , and evaluate the
corresponding recall. This offline evaluation framework allows us to
gate embedding quality using the offline metrics for each proposed
model improvement.

4.2 Serving ANN
For online serving, we leverage Nebula graph database [19] that
allows us to do efficient node and edge property lookup in graph
walks. Our dataset works with over 10 billion edges and 800 million
nodes. This implies 4TB of graph data, and 2TB of embedding
index. To support large-scale realtime usage (10k RPS) at a cost-
effective manner, we opted to partition our ANN indices by core
geographical regions, based on the observation that friendship has
a strong geographical correlation [17]. This optimization helps reap
good infrastructure cost savings while achieving low end-to-end
query latency.

5 EVALUATION
5.1 Evaluation Setup
To validate our method, we measure the recall with historical user
data. We queried monthly active users in an anonymized country
snapshot on 01/28/2024. We fetched all friendship and engagement-
labeled edges with these users as the source node. We randomly
sampled 2 million users for analysis.

To evaluate the results, we ran multiple trials of 10k unique
sampled users with at least one friend request sent reciprocated
between 01/29 and 02/11, and sampled up to 5 new friends made
per add sender as their labels. This setup allows us to not biased
towards power users in our analysis. In total we have around 20k
new friends for each sample used as positive labels.

We adopt the following label pre-processing: assume we have 2
seeds A, B, where we retrieve top n results for each seed during
ANN search 𝐴𝑟 = [𝑎1, 𝑎2, . . . , 𝑎𝑛], 𝐵𝑟 = [𝑏1, 𝑏2, . . . , 𝑏𝑛]. We com-
bine the results in the order of increasing embedding distance of
the candidate to searcher’s embedding.
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For negative samples, we randomly selected 1M other MAUs
as distractors. Then we built a HNSW index containing both the
positive and negatives samples. We used FAISS [5] implementation
of HNSWFlat index with default parameters (m=32, efConstruc-
tion=40, efSearch=16).

For each searcher, we fetched 1000 candidates in total to calculate
their recall@100 and recall@1k metrics. That is 200 candidates
fetched from each seed with 5 seeds if we enable seed selection, or
1000 candidates if we use the searcher’s own embedding.

5.2 Offline Evaluation
For offline evaluation, We compare the following treatments, where
we are given a query user, its corresponding embedding vector,
seed set size 5:
Baseline: Using query’s embedding vector for approximate nearest
neighbor search; Random friends: Using the query user’s 1-hop
neighbors, randomly sampled 5 seeds, and each fetches ANNs; Pin-
nerSAGE: We run embedding clustering on all searcher’s friends,
and select top 5 seeds; Location-based seed selection: We use the
searcher’s friends by closest geodistance, and select top 5 seeds;
Recency: We select top 5 seeds from 1-hop neighbors (1) as the
ranking criterion; Engagement: We select top 5 seeds using (2) as
the ranking criterion; Ensemble: We combine recency-based seed
selection and engagement-based seed selection where we select 4
seeds from recency-based and 1 from engagement based.

Each seed runs ANN that returns n/5 results, and are finally
combined as the ANN result. Table 1 shows the results of offline
evaluation. It is worth noting that most seed selection methods
underperform in terms of recall@100, but when we increase the
retrieval size, the recall increases dramatically. Also it is important
to call out that seed selection methods are data adaptive, so if we
include more data in test time window, we should expect recall to
improve. For the retrieval size of 1000, for our usecase, this is a
reasonable precision / recall tradeoff. In practice, we find that L2
rankers can be directly benefited when rolling out these changes
on retrieval size, with such retrieval sizes.

In terms of features, we find that recency and engagement fea-
tures are both significantly helping performance. Ensemble of the
two signals work the best. It is interesting that PinnerSAGE, did
not yield strong performance gains, highlighting the needs to tune
seeds based on user interaction signals.

Additionally, we highlight that random selection is already doing
very well for recall@1000. Although this may seem counterintu-
itive, we hypothesize that the role of social circle association is
very important in the online setting. In the case of EBR serving
candidates from multiple social circles, ranker is more likely to
serve candidates with higher social circle coverage.

6 A/B TEST RESULTS
We setup an online A/B experiment to test the production impact .
The A/B was done on 10M sampled users per treatment, and was
run in succession with the following treatments:

• Control: Vanilla EBR
• Experiment 1, Treatment: V1 (Stochastic EBR)
• Experiment 2, Treatment: V3 (Recency-Based Selection)
• Experiment 3, Treatment: V5 (Ensemble)

Table 1: Offline evaluation
Method Recall@100 Recall@1000
Baseline 0.1857 0.2426
Random 0.1739 0.3417
PinnerSAGE 0.1569 0.3226
Location 0.1717 0.3329
Recency 0.1800 0.3469
Engagement 0.1768 0.3549
Ensemble 0.1861 0.3560

Table 2: Online A/B Results
Experiment Friends Made with Communication
Control (Baseline) 0%
Experiment 1 Control +7.7%
Experiment 2 Experiment 1 +1.7%
Experiment 3 Experiment 2 +1.6%
Overall Implies 11% improvements over baseline

All treatments are selected with 5 seeds, so each seed is allocated
the same number of ANN budget. Table 2 shows the A/B result. We
measure the results by new friends made with communication (e.g.,
chatting, viewing friend contents). The metric is defined by: the
user adds a suggested friend candidate, the candidate reciprocates
and initiates qualified interactions within certain days. This metric
denotes a high-quality friendship made on the platform and sug-
gests that the friend is likely a valid friendship in the real world.
From the result, naive treatment 1 already offers substantial gain.
This confirms the hypothesis that multi-modal representation of
users is much more effective than single embedding. As we include
more refined selection criteria, we observe further metric gains,
showing 11% over the EBR baseline.

We also tested variantswherewe try to explicitly include searcher
embedding as part of seed selection. Interestingly, we did not find
any notable difference whether or not we use the searcher embed-
ding. We hypothesized that it is more important to do similarity
search within each social circle, and excluding searcher embedding
may balance the results more evenly across searcher’s social circles.

7 CONCLUSION
In this work, we introduced FriendSeedSelection, a test-time query
expansion method for improving EBR approximate nearest neigh-
bor search (ANN) for friend recommendation at Snapchat. We pre-
sented several approaches to one-hop neighbor selection, using
a mixture of feature engineering, and embedding space coverage
using hierarchical clustering on embedding vectors. In online A/B
presented to tens of millions of users, we showed empirically that
such ensemble embeddings meaningfully improved friending en-
gagement metrics.

A few promising directions for future work include (1) compute
more expressive multi-hop graph features offline to guide seed
selection, and (2) dynamically adjust seed selection and sampling
via user’s friending activity feedback.
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