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ABSTRACT
This paper addresses the challenges of aligning large language
models (LLMs) with human values via preference learning (PL),
focusing on incomplete and corrupted data in preference datasets.
We propose a novel method for robustly and completely recalibrating
values within these datasets to enhance LLMs’ resilience against the
issues. In particular, we devise a guaranteed polynomial time ranking
algorithm that robustifies several existing models, such as the classic
Bradley–Terry–Luce (BTL) [5] model and certain generalizations
of it. To the best of our knowledge, our present work is the first to
propose an algorithm that provably recovers an 𝜖-optimal ranking
with high probability while allowing as large as 𝑂 (𝑛) perturbed
pairwise comparison results per model response. Furthermore, we
show robust recovery results in the partially observed setting. Our
experiments confirm that our algorithms handle adversarial noise and
unobserved comparisons well in both general and LLM preference
dataset settings. This work contributes to the development and scaling
of more reliable and ethically aligned AI models by equipping the
dataset curation pipeline with the ability to handle missing and
maliciously manipulated inputs.

1 INTRODUCTION
Large Language Models (LLMs) are highly advanced Artificial
Intelligence (AI) systems capable of understanding, interpreting, and
generating languages. The integration of AI chatbots like ChatGPT
into our daily lives and businesses has had a profound impact on
both society and industries [12]. These models have evolved from
being specialized tools in specific fields to versatile assets that
are increasingly applied in everyday activities and diverse work
environments [31]. However, the success of GPTs/LLMs depends
not only on their ability to generate responses and perform tasks well
but also on their alignment with human values and expectations.

The prevalent method for aligning AI/LLMs currently involves
preference learning (PL) through RLHF or Reinforcement Learning
from AI Feedback (RLAIF) [26] using Proximal Policy Optimization
(PPO) [38], or alternatively, employing Direct Preference Opti-
mization (DPO) [35]. While PPO is a reinforcement learning (RL)
technique within the RLHF pipeline, DPO directly integrates human
preferences into the LLMs.

These techniques rely on collecting and curating high-quality
pairwise human preference data, which presents several challenges.
Gathering human feedback is slow and expensive and often results in
incomplete or imperfect data [4, 26]. Furthermore, participants may
intentionally provide inaccurate or harmful feedback due to malicious
intentions, as pointed out by [6]. These factors can lead to unintended
consequences in estimating rankings from preference datasets from
models such as BTL. They pose a considerable challenge in ensuring

Figure 1: CURATRON corrects incomplete and adversarially
corrupted preference data to improve RLHF/DPO alignment
results compared to using the raw initial preference data.

the integrity and reliability of the preference datasets used for
aligning LLMs, especially when scaling up the alignment process
with large-scale responses and participants.

Approaching the issues, we consider the following learning prob-
lem. Suppose there are𝑛 responses we wish to order based on a notion
of comparison, between every pair of responses, with probabilistic
outcomes. Further, we are given a set, ℵ = {(𝑖, 𝑗, {𝑦𝑘

𝑖 𝑗
})}, consist-

ing of 𝐾 independent pairwise comparison outcomes, denoted by
{𝑦𝑘
𝑖 𝑗
} ∈ {0, 1}, 𝑘 ∈ [𝐾], between pairs of responses (𝑖, 𝑗) ⊆ [𝑛] × [𝑛],

a significant proportion of which might be corrupted by an adversary.
In this passive learning setting, the concrete questions we wish to
address are:

(1) Is it possible to identify the pairs whose comparison results
were corrupted by an adversary?

(2) Having identified the corrupted results, as desired, is it
possible to filter them out while computing a global ranking
of the 𝑛 responses?

(3) Is this task tractable statistically and computationally?
(4) If so, is it possible to construct a provably correct and

efficient algorithm, and what are the associated properties?
(5) Further, does it work well in practice when we may also

encounter unobserved data?
Our Contributions: We systematically answer the above questions
in the affirmative. Specifically, our contributions are as follows.

(1) Problem formulation: We give a generic definition of (addi-
tive) adversarial noise, which can be handled for a broad class
of statistical models, including the classic BTL model and
also certain extensions of it such as the general Low–Rank
(LR) models [37]. As is the case with standard estimation
techniques, if the noise is not modeled and handled well, we
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show that the quality of the estimated ranking could be quite
bad, by quantifying the error of the estimated ranking with
respect to the best possible ranking.

(2) Algorithms & guarantees:
• Under certain (information-theoretically tight) identifi-

ability assumptions on the properties of the adversary,
we develop a correct and efficient ranking method,
Robust Preference Data for Rigorous Alignment (RO-
RATRON), that guarantees 𝜖-accurate high-probability
learnability in a manner that is ‘robust’ and oblivious
to the effects of the adversary. Our learning algorithm
is provably characterized by polynomial time computa-
tional complexity.

• In practice, it is often the case that not all pairs are
compared, and even the observed pairwise comparison
data could be adversarially corrupted – we also develop
Complete Robust Preference Data for Rigorous Align-
ment (CURATRON) and characterize the conditions
for guaranteed robust recovery in this scenario. This re-
sults in a practical implication of enhancing preference
data collection efficiency by automatically generating
complete datasets from limited missing preference data.

(3) Experiments: Finally, we support our theoretical results
by showing robust ranking results on both synthetic and
real-world experiments. Our experiments demonstrate the po-
tential of our method in helping create large-scale AI/LLMs
that are more accurately aligned with human values using
minimal human effort as we achieved high reconstruction
accuracy despite severe data missing and corruption.

2 RELATED WORK
We now briefly present relevant work in: (1) LLM alignment with PL
from human feedback, (2) ranking models and ranking algorithms
that handle noise, and (3) robust subspace recovery methods, which
will be needed for us to prove recovery results for ranking.

LLM Alignment with PL from human feedback: PL was initially
developed to train agents in simulated environments to perform
nuanced behaviors that are hard to define but easy to observe and
recognize [8]. It has recently been found successful in aligning LLMs
to human intentions and values such as harmfulness, helpfulness,
factuality, and safety. Some of the methods of PL in LLMs are
RLHF [34], RLAIF [4, 26], DPO/𝜓PO [35, 43, 47], and SLiC-HF
[47]. However, these methods assume that there is high-quality
human supervision through pairwise/ranking preference data, but in
practice, this is often not the case [6]. Recent works such as KTO [13]
also attempt to eliminate the need for pairwise human preferences,
requiring only binary feedback on LLM outputs.

Ranking Models: In the BTL model, item 𝑖 has an associated
score𝑤𝑖 ; then, the probability that item 𝑖 is preferred over 𝑗 is given
by 𝑃𝑖 𝑗 = 𝑒−𝑤8 /(𝑒−𝑤8 + 𝑒−𝑤9 ) where w ∈ R𝑛 is the BTL parameter
vector to be estimated from data; here, P ∈ R𝑛×𝑛 is called the
‘preference matrix’. A closely related model, in the non-active setting,
is the recently proposed LR model [37] wherein a generic class of
preference matrices is characterized to be those having low rank

under transformations using certain functions; specifically, for BTL-
like models, the logit function defined as 𝜓 (𝑥) = log (𝑥/(1 − 𝑥))
turns out to right choice as shown in their paper. However, while
their model accounts for missing information, they do not consider
the harder problem of handling adversarial noise. Several robust
ranking heuristics have been proposed (for example, [45, 49]) but
these approaches do not have theoretical guarantees associated with
them. The Sync-Rank algorithm, for handling different noise models
as compared to the one considered in the preset work, was proposed
in [11] and is based on spectral techniques. Another related work is
[36] which proposes the so-called ‘Generalized Low-Noise’ (GLN)
condition that ∀𝑖 ≠ 𝑗, 𝑃𝑖 𝑗 ¡ 𝑃 𝑗𝑖 =⇒ ˝𝑛

ℎ=1 𝛼ℎ𝑃ℎ𝑗 ¡
˝𝑛
ℎ=1 𝛼ℎ𝑃ℎ𝑖 for

𝛼 ∈ R𝑛 . When 𝛼ℎ = 1,∀ℎ they analyze the sample complexity and
show convergence properties of various popular ranking algorithms
like:

(1) Maximum Likelihood (ML): this entails solving
arg maxw

˝
𝑖� 𝑗 (b𝑃𝑖 𝑗 (𝑤 𝑗−𝑤𝑖 )−log(1+exp(𝑤 𝑗−𝑤𝑖 ))) where

w ∈ R𝑛 is the BTL parameter vector and b𝑃𝑖 𝑗 is the empirical
preference matrix.

(2) Rank Centrality (RC) [28]: here, one sorts items by their
scores which are computed as the stationary distribution of
an appropriately normalized empirical preference matrix;
this approach has a known sample complexity guarantee of
𝑂 (𝑛 log(𝑛)).

(3) Borda Count (BC) [23]: this heuristic involves ranking an
item according to the fraction of times it beats other items.

For the general case 𝛼 (which previous methods fail to handle),
they also propose a noise-tolerant SVM-based method for rank
aggregation. However, in the adversarial setting, we consider in
this paper, GLN could be violated and hence requires a different
algorithmic approach and analysis.

Robust Subspace Recovery: It is well-known that Principal Com-
ponent Analysis (PCA), a ubiquitous technique for subspace identifi-
cation, is not robust to outliers; this may be attributed to the fact that
PCA is an 𝐿2 optimization problem due to which grossly corrupted
data points may perturb and skew the eigenvectors spanning the
maximum variance subspace of the data points significantly.

The Robust PCA (RPCA) problem [30] addresses the following
question: suppose we are given a data matrix M which is the sum of an
unknown low-rank matrix L and an unknown sparse matrix S, can we
recover each of the component matrices? While several works [19, 46]
analyze this problem, it is shown in [30] that, under information-
theoretically tight assumptions, a simple iterative algorithm based on
non-convex alternating projections of appropriate residuals provably
yields an 𝜖-accurate solution in𝑂 (log(1/𝜖)) iterations with an overall
computational complexity of 𝑂 (𝑛2𝑟2 log(1/𝜖)) where 𝑟 is the rank
of L. We will use this result, in particular, to derive guarantees for
our ranking problem.

3 PROBLEM SETUP AND SOLUTION
APPROACH

3.1 Notation
We first define some notation. We denote the set of all permutations
of 𝑛 LLM responses/items as S𝑛 . If not specifically defined, we use
lower-case letters for scalars, upper-case letters for global constants,
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lower-case bold-face letters for vectors and upper-case bold-face
letters for matrices; speci�cally,Pdenotes a preference matrix. Let
P= := f P 2 »0•1¼=� = j%8 9¸ %98= 1g denote the set of all pairwise
preference matrices over= responses. Let the set of stochastic-
transitive matrices beP()

= := f P 2 P= j%8 9¡ 1•2• %9: ¡ 1•2 =)
%8: ¡ 1•2g. Let the set preference matrices described by the BTL
model beP �) !

= := f P 2 P= j9w 2 R= s.t.4� F8•¹4� F8 ¸ 4� F 9ºg. Let
k : »0•1¼ 7!R be a strictly increasing b¼ective! -Lipschitz function
and de�ne the class of low-rank preference matrices with respect to
k asP !' ¹k•Aº

= = f P 2 P= jrank¹k ¹Pºº � AgwhereA2 »=¼; when we
apply such a transformation to a matrix, it is applied entry-wise. In
this paper, we takek to be the logit function.

For any matrix M 2 R=� =, let the in�nity norm be de-
noted bykMk1 = max8•9

�
�" 8 9

�
�, the Frobenius norm be denoted

by kMk� =
q Í =

8=1
Í =

9=1 " 2
8 9, the spectral norm be denoted by

kMk2 = maxx•y2R= x> My. Denoting the indicator function by1, de-
�ne the zero norm of a matrix to be the maximum number of non-zero
elements in any row/column, ie,kMk0 = max¹max9

Í =
8=1 1¹" 8 9<

0º•max8
Í =

9=1 1¹" 8 9< 0ºº. Let the Singular Value Decomposition
(SVD) of a square matrix be given byM = U� V> whereU•V 2 R=� A

are orthonormal matrices (whose columns are singular vectors) and
� 2 RA� A is the diagonal matrix of singular values. Now,M is said

to be` -incoherent ifmax
�
max8




 e>

8 U




2 •max8




 e>

8 V




2

�
� `

p
A•=

wheree8denotes the8C� basis vector inR=. Also, letf max := max8 � 88
andf min := min8 � 88.

We de�ne the distance between a permutationf 2 S= and a
preference matrixP 2 P= as:

dist ¹f• Pº :=
�
=
2

� � 1 Õ

8Ÿ9

1
�
¹%8 9¡ 1•2º ^ ¹ f ¹8º � f ¹9ºº

�

¸
�
=
2

� � 1 Õ

8Ÿ9

1
�
¹%98¡ 1•2º ^ ¹ f ¹9º � f ¹8ºº

�

Note that the above loss function basically is the number of pairs
on which the ordering with respectf andP di�er divided by the
number of ways to choose two out of= responses. Finally, let
%min = min8<9%8 9and� = min8<9

�
�k ¹%8 9º � k ¹1•2º

�
�.

3.2 Characterization of the Adversary
The following (weak) assumption characterizes the properties of the
adversary. We shall see in the next section that it is information-
theoretically tight in order to guarantee recovery in the solution
approach that we propose. Note that this is a deterministic assumption;
in particular, we do not have any distributional assumptions regarding
the locations, the signs, or the magnitudes of the corruptions, and
hence is very general.

Assumption 1. The (additive) adversarial noise which corrupts
a ` -incoherent preference matrixP 2 P !' ¹k•Aº

= is modeled by a
skew-symmetric sparse matrixSso that the corrupted preference
matrixPc 2 P= is given byPc = P¸ S. We assume the (deterministic)
bounded degree condition thatkSk0 � 3 Ÿ = such3 Ÿ =•512̀ 2A
whereA� =.

So, why do existing non-robust algorithms not recover the true re-
sponse ordering in the presence of an adversarial noise source?This

Procedure 1RPCA: Robust Principal Component Analysis

Input: M = L� ¸ S� , rankAof L� .
Output: bL•bS.

1: Solve the following optimization problem using Algorithm 1 of
[30]:

fbL•bSg = arg min
L•S

kM � L � Sk�

s.t. rank¹Lº � A•kSk0 � 3

2: return bL•bS.

Procedure 2PR: (W-approximate) Pairwise Ranking

Input: Preference matrixM 2 R=� =.
Output: Rankingbf .

1: Compute88• E8  
Í =

9=1 1¹" 8 9¡ 1•2º.
2: return bf  Sort¹vº.

question is answered by the following proposition which precisely
quanti�es how bad a ranking could be when an algorithm uses the
corrupted pairwise preference matrix. The key idea is to construct
an adversary that intentionally �ips true comparison results.

Claim 1 (Upper bound on estimation error ). Under As-
sumption 1 it is possible thatdist¹bf• Pcº = $ ¹1º.

Proof. Assume that we are exactly given the entries of the
preference matrix as opposed to sampling them. Note that in order
to estimate a ranking from a given preference matrix, we still need
to use a pairwise ranking procedure. Letbf 2 S= be the output of
any Pairwise Ranking (PR) procedure with respect to an underlying
preference matrixQ 2 P=. For a constantW ¡ 1, bf is said to
beW-approximate ifdist¹bf• Qº � Wminf 2S= dist¹f• Qº. De�ne the
following distance which measures the fraction of response pairs
over which two preference matricesf Q•Rg 2 P= disagree.

dist ¹Q•Rº :=
�
=
2

� � 1 Õ

8Ÿ9

1
�
¹&8 9¡ 1•2º ^ ¹ ' 8 9Ÿ 1•2º

�

¸
�
=
2

� � 1 Õ

8Ÿ9

1
�
¹&8 9Ÿ 1•2º ^ ¹ ' 8 9¡ 1•2º

�

By Lemma 20 of [37], for Q 2 P()
= andR 2 P=, we havedist¹bf• Qº �

¹1 ¸ Wº dist¹Q•Rº. But note that it is possible thatdist ¹Q•Rº = 1 as
it is easy to construct byR that disagrees withQ in every entry by
simply settingR = Q> . Now, we may setQ = PandR = Pc for any
algorithm that usesPc for ranking; speci�cally, for the adversary
satisfying Assumption 1, we can see by a direct counting argument
thatdist ¹Q•Rº � 3 ¹2=� 1� 3º

=¹=� 1º which proves the claim. �

3.3 Solution Approach
This part of the paper identi�es three scenarios/settings where
missing and adversarially corrupted comparisons can a�ect the
ranking results. We plan to tackle the three situations detailed in
subsequent sections:
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(1) Fully observed and adversarially corrupted setting:Some
instances of the comparison results are adversarially cor-
rupted. This scenario can happen when data quantity is
prioritized over data quality in the data collection process,
resulting in biased or malicious human feedback. Algorithm
3 RORATRONis proposed to solve this problem.

(2) Partially observed and uncorrupted setting:Not all pairs
of responses are compared. This scenario can happen when
data quality is prioritized over quantity in the data collection
process. Observing all possible comparisons can be expen-
sive and challenging, especially when there are many LLM
responses to compare. Algorithm 4CORATRONis proposed
to solve this problem.

(3) Partially observed and adversarially corrupted setting:Both
(1) not all pairs of responses are compared, and (2) some in-
stances of the comparison results are adversarially corrupted.
This scenario can happen when data quantity and quality
are not met in the data collection process. This scenario will
likely happen in a large crowd-sourced environment due to
large-scale LLM responses and participants. Algorithm 5
CURATRONis proposed to solve this problem.

4 FULLY OBSERVED ADVERSARIAL
SETTING

4.1 Algorithm
In this section, we answer Question 4. We present our main algorithm
for robust passive ranking from pairwise comparisons in the presence
of adversarial noise in Algorithm 3. The input data consist of the set
of pairwise comparison results@= f¹8• 9•f~:

8 9gºg, ¹8• 9º 2 »=¼ � »=¼,

: 2 » ¼, ~:
8 92 f0•1g. The algorithm assumes the true rank ofk ¹Pº

as an input parameter; speci�cally, for the BTL model, we setA= 2.
Algorithm 3 calls the following procedures:

(1) Robust PCA (Procedure 1):Note that Step 3 of Algorithm 3
uses a matrix low-rank plus sparse decomposition subrou-
tine. To obtain our recovery guarantee, it is su�cient to
use the robust PCA problem as a black-box method; for
the precise details of this algorithm, we refer the reader
to [30]. In particular, for our analysis, we use the noise-
case guarantees in their paper. This is characterized by a
(strongly-polynomial) running time of$ ¹=2A2 log¹1•nºº and
guaranteesn-recovery of the component matrices under the
conditions of Assumption 1 and Lemma 3.

(2) W-approximate pairwise ranking procedure (Subroutine 2):
Step 4 of Algorithm 3 calls a constant factor approximate
ranking procedure. Speci�cally, we use the Copeland pro-
cedure [9] which has a5-approximation guarantee [10]
and involves sorting the responses according to a score of
response8given by

Í =
9=1 1¹%8 9¡ 1•2º.

4.2 Analysis
We begin with a useful short result followed by the statement and
the proof of our main result that, with high probability, we achieve
n�accurate ranking in polynomial time using polynomial number
of samples, despite the presence of adversarial noise. Precisely,
Theorem 1 and Remark 1 address Question 3; Remark 2 addresses

Algorithm 3 RORATRON:Robust Preference Data for Rigorous
Alignment

Input: Comparison dataset@= f¹8• 9•f~:
8 9gºg, true rankA.

Output: Ranking of= responses,̂f 2 S=.
1: Estimate entries ofbP for 8� 9as:

b%8 9=

(
1
 

Í  
: =1~:

8 9 if 8Ÿ 9

1•2 if 8= 9

2: Setb%8 9= 1 � b%98for all 8¡ 9.
3: Perform robust PCA:fk ¹Pº•bSg  RPCA¹k ¹bPº•Aº.
4: Using a pairwise ranking procedure after taking the inverse

transform:bf  PR¹Pº.
5: return bf .

Question 1. In this context it is noteworthy that we present the result
for LR models which strictly contain the BTL model while being
much more general [37]; upon proving this result, we specialize it to
the classic BTL model as well (Corollary 1).

Lemma 1 (Some properties of the logit function ). Let
0•1•22 ¹0•1º such that2 = 0 ¸ 1. Then, we have,

(1) k ¹2º = k ¹0º ¸ k ¹0 ¸ 1º ¸ k ¹1 � 0º
(2) k ¹0º ¸ k ¹1 � 0º = 0.

Proof. Both follow by using the de�nition of the logit function
thatk ¹0º = log¹0•¹ 1 � 0ºº and using the property thatlog¹01º =
log¹0º ¸ log¹1º. �

Theorem 1 (Provably good estimation of ranking in
LR models in the presence of adversarial noise ). LetP 2
P !' ¹k•Aº

= be the true preference matrix according to which the
pairwise comparison dataset@= f¹8• 9•f~:

8 9gºgis generated for all

responses pairs¹8• 9º such that: 2 » ¼. Let bP be the empirical
preference matrix computed using@. Let S 2 »0•1¼=� = be the
adversarial matrix that additively corruptsbP. Letk be! -Lipschitz
in »%min

2 •1 � %min
2 ¼and k ¹Pº be ` -incoherent. Let each pair be

compared independently � 16384̀2¹1¸ Wº! 2=2 log2¹=º•n� 2 times
where� = min8<9

�
�k ¹%8 9º � k ¹1•2º

�
�. Then, with probability atleast

1 � 1•=3, Algorithm 3 returns an estimated permutationbf such that
dist¹bf• Pº � n.

Remark 1 (Computational complexity ). In Algorithm 3,
Step 1 takes$ ¹=2 º = $ ¹=4 log2=•nº time, Step 3 takes
$ ¹=2A2 log¹1•nºº, and Step 4 takes$ ¹=2¸ = log=º time. Thus, putting
together the cost of these main steps, the overall computational
complexity of our robust ranking algorithm forP 2 P !' ¹k•Aº

= is
$ ¹=4 log2=•nº.

Remark 2 (Identifying adversarially corrupted pairwise
comparisons ). From Step 3 of Algorithm 3, using Theorem 2 of
[30], we also haveSupp¹bSº � Supp¹Sº and thus we can identify the
corrupted pairwise comparison results.

Remark 3 (Missing data versus adversarially corrupted
data ). Note that the adversarial sparse noise we consider subsumes
the setting when comparison results for certain pairs are missing
as in [37] and hence directly applies in that situation. Moreover,
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since the support and magnitude of the corrupted entries of the
preference matrix are unknown, the problem considered in this paper
is harder; consequently, our sample complexity is$ ¹=2º as opposed
to $ ¹=poly log=º in their work.

Proof. Let e%8 9be the empirical probability estimate of%8 9. Note
that we computee%8 9= 1

 
Í  

: =1~:
8 9from the given pairwise com-

parison dataset,@= f¹8• 9•f~:
8 9gºg. Now,bP = eP¸ S. By Lemma 1,

we may write the adversarially corrupted empirical probability es-
timate ask ¹bPº = k ¹ePº ¸ eS whereeS = k ¹eP ¸ Sº ¸ k ¹1 � ePº. We
havek ¹ePº = k ¹Pº ¸ eN whereeN = k ¹ePº � k ¹Pº. Now, this noise,
eN, is purely due to �nite-sample e�ects which can be controlled
(using concentration arguments given in the inequalityb3 below) by
driving it down to as small a value as we want by ensuring large
enough number of comparisons for each pair. Note that we input
k ¹bPº = k ¹Pº ¸ eS¸ eN to Subroutine 1 and obtaink ¹Pº as the output
in Step 3 of Algorithm 3. Hence, using Theorem 2 from [30], if




 eN







1

� f min¹k ¹Pºº•100=, we have,






k ¹Pº � k ¹Pº







�

� n0 ¸ 2` 2A
�
7






 eN







2

¸
8=
A






 eN







1

�

after ) � 10 log¹3` 2Af1•n0º iterations associated with Step 1 of
Subroutine 1. Next, we have, with probability at least1 � 1•=3,






k ¹Pº � k ¹Pº







�

� n0 ¸ 2` 2A
�
7






 eN







2

¸
8=
A






 eN







1

�

b1
� n0 ¸ 32̀ 2=






 eN







2

b2
� n0 ¸ 32̀ 2=g

b3
� =

r
n

1 ¸ W
�
2

whereb1 follows by usingA � = and





 eN







1

�





 eN







2
, b2 follows by

substituting foreN from Lemma 2 with � ! 2=2 log2 =
g2 , andb3 is ob-

tained usingn0 = =
q

n
1̧ W

�
4 , g = min

�
f min¹k ¹Pºº•100•

q
n

1̧ W
�

128̀ 2

�
.

Then using similar arguments as proof of Theorem 13 in [37], we
obtain our result. �

Lemma 2 (Concentration of sampling noise ). Under the
conditions of Theorem 1, let each response pair be compared such

that the number of comparisons per response pair is � ! 2=2 log¹=º
g2 ;

with probability at least1 � 1•=3,





 eN







2

� g.

Proof. Let ! be the Lipschitz constant ofk and set �
! 2=2 log¹=º

g2 . Using the inequality that





 eN







2

� =





 eN







1

,

Pr
� 



 eN







2

� g
�

� Pr
� 



 eN







1

�
g
=

�

= Pr
�
9¹8• 9º :

�
�
�k ¹b%8 9º � k ¹%8 9º

�
�
� �

g
=

�

�
Õ

8•9

Pr
� ��
�k ¹b%8 9º � k ¹%8 9º

�
�
� �

g
=

�

�
Õ

8•9

Pr
� ��
�b%8 9� %8 9

�
�
� �

g
=!

�
�

1
=3

�

Next, for completeness, we recall the following lemma (proved
in Theorem 8 and Lemma 14 of [37]) which characterizes the
incoherence constant` of P 2 ¹P !' ¹k•2º

= \ P ()
= º in Assumption 1.

Lemma 3 (Incoherence of BTL and LR models ). We have
P 2 ¹P !' ¹k•2º

= \ P ()
= º if and only ifk ¹Pº = uv> � vu> for u 2 R=

¸
andv 2 R= whereu> v = 0. Moreover,k ¹Pº is ` -incoherent where

` =
q

=
2

�
D2

max
D2

min
¸ E2

max
E2

max

� 1•2
whereDmin = min8 jD8j, Dmax = max8 jD8j,

Emin = min8 jE8j and Emax = min8 jE8j. We also haveP �) !
= �

¹P !' ¹k•2º
= \ P ()

= º since we may setu = 1 where1 is the all-ones
vector andv = w wherew is the BTL parameter vector. In this case,

we may rewritè =
q

=
2

�
1 ¸ ¹Fmax� F º2

¹Fmin � F º2

�
whereF = 1

=
Í =

8=1F8.

The following corollary makes precise our claim that up to$ ¹=2º
response pairs may be subject to adversarial corruption, but our
RORATRON algorithm still recovers a good ranking.

Corollary 1 ( Recovery result for BTL model ). Consider
P 2 P �) !

= . Using Assumption 1, let the adversarial matrix be
S2 »0•1¼=� = satisfyingkSk0 � =•1024̀ 2 where` is characterized
as in Lemma 3. Then, with probability1 � 1•=3, the output of
Algorithm 3 with inputbPcomputed using@= f¹8• 9•f~:

8 9gºgsatis�es
andA= 2, dist¹bf• Pº � n.

5 PARTIALLY OBSERVERED ADVERSARIAL
SETTING

In this section, we consider the partially observed and adversarially
corrupted comparison results setting. Both factors can be modeled
in a uni�ed manner by setting the corresponding missing entries of
the preference matrix to zero (or a speci�c constant to account for
numerical stability). We present our robust ranking algorithm for this
setting in Algorithm 5 � this essentially involves using the `OptSpace'
matrix completion algorithm of [24] followed by using the robust
PCA algorithm of [30] as sub-routines. We note at this point that, in
the case when we are con�dent that the data are collected faithfully
but we do not have the full data to work with, we can use OptSpace
on its own to generate the full preference matrix from the incomplete
one, as presented in Algorithm 4. We show in Experiment 7.3 below
that in such a setting with extremely missing data, we can still
complete the full matrix with minimal error.

While the recent work of [32] considers the incomplete data case,
it leverages extra information provided in the form of side information
(speci�cally, noiseless and complete item-related features) to derive
recovery guarantees; however, their algorithm is still unable to handle
the presence of pairwise comparisons corrupted in an adversarial
manner as the required assumptions on the noise bounds are violated.
We now derive the recovery guarantees as follows.

Theorem 2 (Provably good estimation of ranking in BTL
model in the presence of adversarial noise as well as
missing data ). Consider a similar notation as in Theorem 1 but
let P 2 P �) !

= . Let 
 � » =¼ � »=¼be a set of compared response
pairs. Assume
 is drawn uniformly from all subsets of»=¼ � »=¼of
sizej
 j such thatj
 j � � 00= log¹=º and let the sparse noise satisfy

kSk1 � � F
log¹=º
� � = where� F := min8•9

�
�F8 � F 9

�
�. Let the number of
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Algorithm 4 CORATRON:Complete Preference Data for Rigorous
Alignment

Input: Comparison dataset@= f¹8• 9•f~:
8 9gºg, true rankA.

Output: Ranking of= responses,̂f 2 S=.
1: Estimate entries ofbP for 8� 9as:

b%8 9=

8>>><

>>>
:

1
 

Í  
: =1~:

8 9 if 8Ÿ 9and¹8• 9º 2 


1•2 if 8= 9and¹8• 9º 2 


1•2 if ¹8• 9º 8 


2: Setb%8 9= 1 � b%98for all 8¡ 9.
3: SetR  OptSpace¹k ¹bPº
 º.
4: Using a pairwise ranking procedure after taking the inverse

transform:bf  PR¹Rº.
5: return bf .

Algorithm 5 CURATRON:Complete Robust Preference Data for
Rigorous Alignment

Input: Comparison dataset@= f¹8• 9•f~:
8 9gºg, true rankA.

Output: Ranking of= responses,̂f 2 S=.
1: Estimate entries ofbP for 8� 9as:

b%8 9=

8>>><

>>>
:

1
 

Í  
: =1~:

8 9 if 8Ÿ 9and¹8• 9º 2 


1•2 if 8= 9and¹8• 9º 2 


1•2 if ¹8• 9º 8 


2: Setb%8 9= 1 � b%98for all 8¡ 9.
3: SetR  OptSpace¹k ¹bPº
 º.
4: Use a robust PCA procedure:k ¹Pº  RPCA¹Rº.
5: Using a pairwise ranking procedure after taking the inverse

transform:bf  PR¹Pº.
6: return bf .

comparisons per pair be � 2=4• � F . Then with probability at least
1 � 2•=3, Algorithm 5 returns a ranking that satis�esdist¹bf• Pº � n.

Remark 4 (Robust Estimation of BTL Model in the Par-
tially Observed Case ). For the BTL model, Theorem 2 says
$ ¹= log=º pairs su�ce to estimate the BTL model which matches
bounds from [37]. Further, even in this incomplete comparison data
case, we are able tolerate uniformly random additive sparse noise its
maximum absolute entry scaling as the order of the BTL `score-gap'
divided by the number of responses upto logarithmic factors, ie,
e$ ¹� F •=º.

Proof. From Lemma 3, we havek ¹Pº = 1w> � w1> for the
BTL model wherek is the logit function. Clearly, in this case,k ¹Pº
is a real skew-symmetric matrix of rankA = 2. Since it is skew-
symmetric, its eigenvalues, which are the roots of its charateristic
polynomial, are of the form� _8for some_ 2 R and8=

p
� 1, and

hence,f min¹k ¹Pºº = f max¹k ¹Pºº, ie, the condition number ofk ¹Pº,
^ = 1. Now, we recall the spectral-lower bound from Corollary 2 of
[18],

f min¹k ¹Pºº �
kk ¹Pºk�p
A¹A� 1º

�

r
=¹= � 1º

2
� F (1)

where� F = min8•9
�
�F8 � F 9

�
�.

Let 
 � » =¼�»=¼be a subset of all the response pairs with compar-
ison results among which some might be corrupted by sparse noise,
ie,k ¹bP
 º = k ¹P
 º ¸ eS
 ¸ eN
 . LetT := eS
 ¸ eN
 . From Theorem 1.2

of [24], we have1
=






k ¹bPº � k ¹Pº







�

= 1
= kT ¸ Mk� � �^ 2=

p
A

j
 j kTk2

whereM is the noise matrix after obtaining the completed matrix
k ¹bPº from k ¹bP
 º using OptSpace. Using triangle inequality and
noting thatj
 j � � 00= log¹=º, the noise may be bounded as






 eN
 ¸ M







1

�





 eN
 ¸ M







�

� kTk2

p
2�= 2

j
 j
¸






eS








�

Z1
� � 0 =

log¹=º






eS








2

(2)

where� , � 0 and� 00are constants andZ1 is obtained by using the

triangle inequality thatkTk2 �





eS








2

¸





 eN








2
, followed by setting

 � 2=4• � F for constant2 and �nally using





eS








�

�
p

=





eS








2
.

Then, combining Equations 2 and 1, we have if

log¹=º
� � =

� F �





eS








2

=





k ¹bPº � k ¹ePº







2

�





k ¹bPº � k ¹ePº







1

� !





 bP� eP







1

� kSk1

where� � is a global constant and using Lemma 2, then we have the
guarantee (along similar lines as that of Theorem 1 that Algorithm 5
returns an estimated permutation which satis�esdist¹bf• Pº � n. �

6 GENERALIZATION TO OTHER RANKING
MODELS

Related to the BTL model are many other binary choice models [14]
such as the Thurstonian model [40]. In such models, the preference
matrix has been shown to be low-rank under appropriate choices of
k ; for instance, for the Thurstonian models, the probit function turns
out to be the right choice. For further details, we refer the reader to
the work of [37].

Let 0•1•22 ¹0•1º such that2 = 0 ¸ 1. Then, for any general non-
linear! -Lipschitz function, we writek ¹2º = k ¹0¸ 1º = k ¹0º ¸ k ¹0¸
1º� k ¹0º. The error may be lower bounded byjk ¹0 ¸ 1º � k ¹0ºj � !1 .
Thus, for any adversarial model wherein we havePc = P ¸ S, we
have:

k ¹Pcº = k ¹Pº ¸ ¹ k ¹P¸ Sº � k ¹Pºº = k ¹Pº ¸ eS

whereeS is also a deterministic sparse corruption matrix with the
absolute value of the non-zero entries lower bounded by!” min8•9( 8 9.
With the appropriatek , k ¹Pº will be a low-rank matrix and hence
Algorithm 3 and the associated recovery guarantee of Theorem 1
holds.

7 EXPERIMENTS
In this section, we answer Question 5. We now perform simulations in
order to understand the performance of our robust ranking approach
in practice in both general and LLM preference dataset settings.

7.1 Evaluation Criterion
We use several evaluations to assess our proposed methods' e�ec-
tiveness against unobserved and adversarial corrupted comparisons.



CURATRON: Complete and Robust Preference Data for Rigorous Alignment of Large Language Models

7.1.1 Normalized Frobenius Error. First, To measure the relative
error between two preference matrices in terms of their elements'
magnitudes, we use the normalized Frobenius error (NFE). NFE
between two matrices%and%is de�ned as:

# � � ¹%•%º =
k%� %k�A>

k%k�A>
•

where the Frobenius norm, denoted ask� k�A>, for a matrix� is
calculated by:

k� k�A> =

vut =Õ

8=1

=Õ

9=1

j08 9j2

In this formula,08 9represents the element of the matrix� in
the8th row and9th column. The Frobenius norm is the square root
of the sum of the absolute squares of all elements in the matrix.
Thus, the numeratork%� %k�A> calculates the Frobenius norm of the
di�erence between the original and reconstructed matrices, and the
denominatork%k�A> calculates the Frobenius norm of the original
matrix. The ratio provides a measure of the relative error normalized
by the magnitude of the original matrix.

7.1.2 Correlation Coe�cient. Second, we compute the correlation
coe�cient for corresponding elements in these matrices to assess
the similarity between the original matrix%and the reconstructed
matrix%. The correlation coe�cient, denoted as2>AA, between the
elements of these two matrices can be de�ned as:

2>AA¹%•%º =

Í =
8=1¹%8 � h %iº¹ �%8 � h �%iº

q Í =
8=1¹%8 � h %iº 2

q Í =
8=1¹ �%8 � h �%iº 2

•

whereh%i andh�%i denote the mean values of the elements within
the%and �%matrices, respectively.= represents the total number of
elements in each matrix.

This formula quanti�es the linear relationship between the matri-
ces' elements. A correlation coe�cient close to1 indicates a strong
positive linear relationship, whereas a value close to� 1 suggests a
strong negative linear relationship. A coe�cient around0 implies no
linear relationship.

7.1.3 Ranking Distance. Third, for ease of reference, we rewrite
thedist ¹bf• Pº formula, which evaluates the distance between rankings
obtained by corrupted and recovered matrices, previously de�ned in
Section??:

dist ¹bf• Pº :=
�
=
2

� � 1 Õ

8Ÿ9

1
�
¹%8 9¡ 1•2º ^ ¹ bf ¹8º � bf ¹9ºº

�

¸
�
=
2

� � 1 Õ

8Ÿ9

1
�
¹%98¡ 1•2º ^ ¹ bf ¹9º � bf ¹8ºº

�
•

wherebf is the global ranking after applying ranking procedure with
�%.

7.2 Performance of Robust Ranking in General
Setting

First, we begin with the BTL model. We generate synthetic pairwise
comparison data and also adversarial sparse matrix as follows. We

Figure 2: Robust recovery results of the BTL model: we �xa = 2
and vary 3 in the left plot; we �x 3 = 100and vary a in the left
plot.

generate the entries of the BTL parameter vectorw from N ¹ 0•a2º
followed by generating the ground truth preference matrix from
with ~:

8 9is sampled for all response pairs¹8• 9º for a �xed  . The
adversarial sparse matrixSis generated as a skew-symmetric matrix
where each entry is non-zero independently with probability3•=
followed by generating a value for an entry from* ¹5•10º and then
setting the sign to be positive with probability1•2; this corruption
matrix is then added to thek ¹Pº to givek ¹Pcº which is then input to
our algorithm; the samePc is used for the other algorithms as well.

We take the number of responses to be= = 500. In plots in
Figure 2, we compare the performance of our RPR approach using
Algorithm 3 against well-known ranking algorithms, such as Rank
Centrality (RC [28], Maximum Likelihood (ML) and Borda Count
(BC) count [23], with special attention to robustness to the noise
model that we consider in this paper. We vary two parameters
namely,a, spread of the BTL scores, and3, the density of adversarial
corruption matrix. All our results averaged over �ve runs. We observe
that our algorithm maintains low recovery error in spite of increasing
the problem hardness, thus outperforming previous approaches in all
cases.

7.3 Performance of Robust Ranking in LLM
Preference Dataset

In this illustrative experiment, from the MT-Bench dataset
[48], we collect the data of the �rst prompt �Compose an
engaging travel blog post about a recent trip to Hawaii, high-
lighting cultural experiences and must-see attractions" and
its six responses fromGPT-3.5, GPT-4 [33], Claude-v1
[3], Vicuna-13B [7], Alpaca-13B [39], and LLaMA-13B
[41]. Additionally, we generated nine responses to the same
prompt usingLlama-2-70B-chat-hf [42], Falcon-180B-chat
[2], Openchat-3.5 [44], Mixtral-8x7B-Instruct-v0.1
[22], Mistral-7B-Instruct-v0.2 [21], Gemini-pro
[15], Dolphin-2.2.1-mistral-7B [16],
Solar-10.7B-instruct-v1.0 [25], Yi-34B-chat [1] from
Hugging Face's HuggingChat [20] and LMSYS's Chatbot Arena
[48]. So we have= = 15responses.

Next, we rank the responses using OpenAI's GPT-4 Turbo
GPT-4-1106-preview [33]. This ranking helps us create the BTL
parameter vectorw. We then sort this vector descendingly for visu-
ally accessible when building the corresponding preference matrix
P 2 R=� =. With

�=
2
�

comparisons inP, we randomly remove en-
tries based on a speci�ed deletion probability parameter,3?, to
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