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ABSTRACT
This paper addresses the challenges of aligning large language
models (LLMs) with human values via preference learning (PL),
focusing on incomplete and corrupted data in preference datasets.
We propose a novel method for robustly and completely recalibrating
values within these datasets to enhance LLMs’ resilience against the
issues. In particular, we devise a guaranteed polynomial time ranking
algorithm that robustifies several existing models, such as the classic
Bradley–Terry–Luce (BTL) [5] model and certain generalizations
of it. To the best of our knowledge, our present work is the first to
propose an algorithm that provably recovers an 𝜖-optimal ranking
with high probability while allowing as large as 𝑂 (𝑛) perturbed
pairwise comparison results per model response. Furthermore, we
show robust recovery results in the partially observed setting. Our
experiments confirm that our algorithms handle adversarial noise and
unobserved comparisons well in both general and LLM preference
dataset settings. This work contributes to the development and scaling
of more reliable and ethically aligned AI models by equipping the
dataset curation pipeline with the ability to handle missing and
maliciously manipulated inputs.

1 INTRODUCTION
Large Language Models (LLMs) are highly advanced Artificial
Intelligence (AI) systems capable of understanding, interpreting, and
generating languages. The integration of AI chatbots like ChatGPT
into our daily lives and businesses has had a profound impact on
both society and industries [12]. These models have evolved from
being specialized tools in specific fields to versatile assets that
are increasingly applied in everyday activities and diverse work
environments [31]. However, the success of GPTs/LLMs depends
not only on their ability to generate responses and perform tasks well
but also on their alignment with human values and expectations.

The prevalent method for aligning AI/LLMs currently involves
preference learning (PL) through RLHF or Reinforcement Learning
from AI Feedback (RLAIF) [26] using Proximal Policy Optimization
(PPO) [38], or alternatively, employing Direct Preference Opti-
mization (DPO) [35]. While PPO is a reinforcement learning (RL)
technique within the RLHF pipeline, DPO directly integrates human
preferences into the LLMs.

These techniques rely on collecting and curating high-quality
pairwise human preference data, which presents several challenges.
Gathering human feedback is slow and expensive and often results in
incomplete or imperfect data [4, 26]. Furthermore, participants may
intentionally provide inaccurate or harmful feedback due to malicious
intentions, as pointed out by [6]. These factors can lead to unintended
consequences in estimating rankings from preference datasets from
models such as BTL. They pose a considerable challenge in ensuring

Figure 1: CURATRON corrects incomplete and adversarially
corrupted preference data to improve RLHF/DPO alignment
results compared to using the raw initial preference data.

the integrity and reliability of the preference datasets used for
aligning LLMs, especially when scaling up the alignment process
with large-scale responses and participants.

Approaching the issues, we consider the following learning prob-
lem. Suppose there are𝑛 responses we wish to order based on a notion
of comparison, between every pair of responses, with probabilistic
outcomes. Further, we are given a set, ℵ = {(𝑖, 𝑗, {𝑦𝑘

𝑖 𝑗
})}, consist-

ing of 𝐾 independent pairwise comparison outcomes, denoted by
{𝑦𝑘
𝑖 𝑗
} ∈ {0, 1}, 𝑘 ∈ [𝐾], between pairs of responses (𝑖, 𝑗) ⊆ [𝑛] × [𝑛],

a significant proportion of which might be corrupted by an adversary.
In this passive learning setting, the concrete questions we wish to
address are:

(1) Is it possible to identify the pairs whose comparison results
were corrupted by an adversary?

(2) Having identified the corrupted results, as desired, is it
possible to filter them out while computing a global ranking
of the 𝑛 responses?

(3) Is this task tractable statistically and computationally?
(4) If so, is it possible to construct a provably correct and

efficient algorithm, and what are the associated properties?
(5) Further, does it work well in practice when we may also

encounter unobserved data?
Our Contributions: We systematically answer the above questions
in the affirmative. Specifically, our contributions are as follows.

(1) Problem formulation: We give a generic definition of (addi-
tive) adversarial noise, which can be handled for a broad class
of statistical models, including the classic BTL model and
also certain extensions of it such as the general Low–Rank
(LR) models [37]. As is the case with standard estimation
techniques, if the noise is not modeled and handled well, we
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show that the quality of the estimated ranking could be quite
bad, by quantifying the error of the estimated ranking with
respect to the best possible ranking.

(2) Algorithms & guarantees:
• Under certain (information-theoretically tight) identifi-

ability assumptions on the properties of the adversary,
we develop a correct and efficient ranking method,
Robust Preference Data for Rigorous Alignment (RO-
RATRON), that guarantees 𝜖-accurate high-probability
learnability in a manner that is ‘robust’ and oblivious
to the effects of the adversary. Our learning algorithm
is provably characterized by polynomial time computa-
tional complexity.

• In practice, it is often the case that not all pairs are
compared, and even the observed pairwise comparison
data could be adversarially corrupted – we also develop
Complete Robust Preference Data for Rigorous Align-
ment (CURATRON) and characterize the conditions
for guaranteed robust recovery in this scenario. This re-
sults in a practical implication of enhancing preference
data collection efficiency by automatically generating
complete datasets from limited missing preference data.

(3) Experiments: Finally, we support our theoretical results
by showing robust ranking results on both synthetic and
real-world experiments. Our experiments demonstrate the po-
tential of our method in helping create large-scale AI/LLMs
that are more accurately aligned with human values using
minimal human effort as we achieved high reconstruction
accuracy despite severe data missing and corruption.

2 RELATED WORK
We now briefly present relevant work in: (1) LLM alignment with PL
from human feedback, (2) ranking models and ranking algorithms
that handle noise, and (3) robust subspace recovery methods, which
will be needed for us to prove recovery results for ranking.

LLM Alignment with PL from human feedback: PL was initially
developed to train agents in simulated environments to perform
nuanced behaviors that are hard to define but easy to observe and
recognize [8]. It has recently been found successful in aligning LLMs
to human intentions and values such as harmfulness, helpfulness,
factuality, and safety. Some of the methods of PL in LLMs are
RLHF [34], RLAIF [4, 26], DPO/𝜓PO [35, 43, 47], and SLiC-HF
[47]. However, these methods assume that there is high-quality
human supervision through pairwise/ranking preference data, but in
practice, this is often not the case [6]. Recent works such as KTO [13]
also attempt to eliminate the need for pairwise human preferences,
requiring only binary feedback on LLM outputs.

Ranking Models: In the BTL model, item 𝑖 has an associated
score𝑤𝑖 ; then, the probability that item 𝑖 is preferred over 𝑗 is given
by 𝑃𝑖 𝑗 = 𝑒−𝑤𝑖 /(𝑒−𝑤𝑖 + 𝑒−𝑤𝑗 ) where w ∈ R𝑛 is the BTL parameter
vector to be estimated from data; here, P ∈ R𝑛×𝑛 is called the
‘preference matrix’. A closely related model, in the non-active setting,
is the recently proposed LR model [37] wherein a generic class of
preference matrices is characterized to be those having low rank

under transformations using certain functions; specifically, for BTL-
like models, the logit function defined as 𝜓 (𝑥) = log (𝑥/(1 − 𝑥))
turns out to right choice as shown in their paper. However, while
their model accounts for missing information, they do not consider
the harder problem of handling adversarial noise. Several robust
ranking heuristics have been proposed (for example, [45, 49]) but
these approaches do not have theoretical guarantees associated with
them. The Sync-Rank algorithm, for handling different noise models
as compared to the one considered in the preset work, was proposed
in [11] and is based on spectral techniques. Another related work is
[36] which proposes the so-called ‘Generalized Low-Noise’ (GLN)
condition that ∀𝑖 ≠ 𝑗, 𝑃𝑖 𝑗 > 𝑃 𝑗𝑖 =⇒ ∑𝑛

ℎ=1 𝛼ℎ𝑃ℎ𝑗 >
∑𝑛
ℎ=1 𝛼ℎ𝑃ℎ𝑖 for

𝛼 ∈ R𝑛 . When 𝛼ℎ = 1,∀ℎ they analyze the sample complexity and
show convergence properties of various popular ranking algorithms
like:

(1) Maximum Likelihood (ML): this entails solving
arg maxw

∑
𝑖< 𝑗 (𝑃𝑖 𝑗 (𝑤 𝑗−𝑤𝑖 )−log(1+exp(𝑤 𝑗−𝑤𝑖 ))) where

w ∈ R𝑛 is the BTL parameter vector and 𝑃𝑖 𝑗 is the empirical
preference matrix.

(2) Rank Centrality (RC) [28]: here, one sorts items by their
scores which are computed as the stationary distribution of
an appropriately normalized empirical preference matrix;
this approach has a known sample complexity guarantee of
𝑂 (𝑛 log(𝑛)).

(3) Borda Count (BC) [23]: this heuristic involves ranking an
item according to the fraction of times it beats other items.

For the general case 𝛼 (which previous methods fail to handle),
they also propose a noise-tolerant SVM-based method for rank
aggregation. However, in the adversarial setting, we consider in
this paper, GLN could be violated and hence requires a different
algorithmic approach and analysis.

Robust Subspace Recovery: It is well-known that Principal Com-
ponent Analysis (PCA), a ubiquitous technique for subspace identifi-
cation, is not robust to outliers; this may be attributed to the fact that
PCA is an 𝐿2 optimization problem due to which grossly corrupted
data points may perturb and skew the eigenvectors spanning the
maximum variance subspace of the data points significantly.

The Robust PCA (RPCA) problem [30] addresses the following
question: suppose we are given a data matrixMwhich is the sum of an
unknown low-rank matrix L and an unknown sparse matrix S, can we
recover each of the component matrices? While several works [19, 46]
analyze this problem, it is shown in [30] that, under information-
theoretically tight assumptions, a simple iterative algorithm based on
non-convex alternating projections of appropriate residuals provably
yields an 𝜖-accurate solution in𝑂 (log(1/𝜖)) iterations with an overall
computational complexity of 𝑂 (𝑛2𝑟2 log(1/𝜖)) where 𝑟 is the rank
of L. We will use this result, in particular, to derive guarantees for
our ranking problem.

3 PROBLEM SETUP AND SOLUTION
APPROACH

3.1 Notation
We first define some notation. We denote the set of all permutations
of 𝑛 LLM responses/items as S𝑛 . If not specifically defined, we use
lower-case letters for scalars, upper-case letters for global constants,
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lower-case bold-face letters for vectors and upper-case bold-face
letters for matrices; specifically, P denotes a preference matrix. Let
P𝑛 := {P ∈ [0, 1]𝑛×𝑛 |𝑃𝑖 𝑗 + 𝑃 𝑗𝑖 = 1} denote the set of all pairwise
preference matrices over 𝑛 responses. Let the set of stochastic-
transitive matrices be P𝑆𝑇𝑛 := {P ∈ P𝑛 |𝑃𝑖 𝑗 > 1/2, 𝑃 𝑗𝑘 > 1/2 =⇒
𝑃𝑖𝑘 > 1/2}. Let the set preference matrices described by the BTL
model be P𝐵𝑇𝐿𝑛 := {P ∈ P𝑛 |∃w ∈ R𝑛 s.t. 𝑒−𝑤𝑖 /(𝑒−𝑤𝑖 +𝑒−𝑤𝑗 )}. Let
𝜓 : [0, 1] ↦→ R be a strictly increasing bĳective 𝐿-Lipschitz function
and define the class of low-rank preference matrices with respect to
𝜓 as P𝐿𝑅 (𝜓,𝑟 )𝑛 = {P ∈ P𝑛 |rank(𝜓 (P)) ≤ 𝑟 } where 𝑟 ∈ [𝑛]; when we
apply such a transformation to a matrix, it is applied entry-wise. In
this paper, we take𝜓 to be the logit function.

For any matrix M ∈ R𝑛×𝑛 , let the infinity norm be de-
noted by ∥M∥∞ = max𝑖, 𝑗

��𝑀𝑖 𝑗 ��, the Frobenius norm be denoted

by ∥M∥𝐹 =
√︃∑𝑛

𝑖=1
∑𝑛
𝑗=1 𝑀

2
𝑖 𝑗

, the spectral norm be denoted by
∥M∥2 = maxx,y∈R𝑛 x⊤My. Denoting the indicator function by 1, de-
fine the zero norm of a matrix to be the maximum number of non-zero
elements in any row/column, ie, ∥M∥0 = max(max𝑗

∑𝑛
𝑖=1 1(𝑀𝑖 𝑗 ≠

0),max𝑖
∑𝑛
𝑗=1 1(𝑀𝑖 𝑗 ≠ 0)). Let the Singular Value Decomposition

(SVD) of a square matrix be given byM = U𝚺V⊤ whereU,V ∈ R𝑛×𝑟
are orthonormal matrices (whose columns are singular vectors) and
𝚺 ∈ R𝑟×𝑟 is the diagonal matrix of singular values. Now, M is said
to be 𝜇-incoherent if max

(
max𝑖

e⊤
𝑖
U


2 ,max𝑖
e⊤
𝑖
V


2

)
≤ 𝜇

√︁
𝑟/𝑛

where e𝑖 denotes the 𝑖𝑡ℎ basis vector inR𝑛 . Also, let𝜎max := max𝑖 Σ𝑖𝑖
and 𝜎min := min𝑖 Σ𝑖𝑖 .

We define the distance between a permutation 𝜎 ∈ S𝑛 and a
preference matrix P ∈ P𝑛 as:

dist (𝜎, P) :=
(
𝑛

2

)−1 ∑︁
𝑖< 𝑗

1
(
(𝑃𝑖 𝑗 > 1/2) ∧ (𝜎 (𝑖) ≻ 𝜎 ( 𝑗))

)
+
(
𝑛

2

)−1 ∑︁
𝑖< 𝑗

1
(
(𝑃 𝑗𝑖 > 1/2) ∧ (𝜎 ( 𝑗) ≻ 𝜎 (𝑖))

)
Note that the above loss function basically is the number of pairs
on which the ordering with respect 𝜎 and P differ divided by the
number of ways to choose two out of 𝑛 responses. Finally, let
𝑃min = min𝑖≠𝑗 𝑃𝑖 𝑗 and Δ = min𝑖≠𝑗

��𝜓 (𝑃𝑖 𝑗 ) −𝜓 (1/2)��.
3.2 Characterization of the Adversary
The following (weak) assumption characterizes the properties of the
adversary. We shall see in the next section that it is information-
theoretically tight in order to guarantee recovery in the solution
approach that we propose. Note that this is a deterministic assumption;
in particular, we do not have any distributional assumptions regarding
the locations, the signs, or the magnitudes of the corruptions, and
hence is very general.

Assumption 1. The (additive) adversarial noise which corrupts
a 𝜇-incoherent preference matrix P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 is modeled by a
skew-symmetric sparse matrix S so that the corrupted preference
matrix Pc ∈ P𝑛 is given by Pc = P+ S. We assume the (deterministic)
bounded degree condition that ∥S∥0 ≤ 𝑑 < 𝑛 such 𝑑 < 𝑛/512𝜇2𝑟
where 𝑟 ≤ 𝑛.

So, why do existing non-robust algorithms not recover the true re-
sponse ordering in the presence of an adversarial noise source? This

Procedure 1 RPCA: Robust Principal Component Analysis

Input: M = L∗ + S∗, rank 𝑟 of L∗.
Output: L̂, Ŝ.

1: Solve the following optimization problem using Algorithm 1 of
[30]:

{L̂, Ŝ} = arg min
L,S
∥M − L − S∥𝐹

s.t. rank(L) ≤ 𝑟, ∥S∥0 ≤ 𝑑

2: return L̂, Ŝ.

Procedure 2 PR: (𝛾-approximate) Pairwise Ranking

Input: Preference matrix M ∈ R𝑛×𝑛 .
Output: Ranking 𝜎 .

1: Compute ∀𝑖, 𝑣𝑖 ←
∑𝑛
𝑗=1 1(𝑀𝑖 𝑗 > 1/2).

2: return 𝜎 ← Sort(v).

question is answered by the following proposition which precisely
quantifies how bad a ranking could be when an algorithm uses the
corrupted pairwise preference matrix. The key idea is to construct
an adversary that intentionally flips true comparison results.

Claim 1 (Upper bound on estimation error). Under As-
sumption 1 it is possible that dist(𝜎, Pc) = 𝑂 (1).

Proof. Assume that we are exactly given the entries of the
preference matrix as opposed to sampling them. Note that in order
to estimate a ranking from a given preference matrix, we still need
to use a pairwise ranking procedure. Let 𝜎 ∈ S𝑛 be the output of
any Pairwise Ranking (PR) procedure with respect to an underlying
preference matrix Q ∈ P𝑛 . For a constant 𝛾 > 1, 𝜎 is said to
be 𝛾-approximate if dist(𝜎,Q) ≤ 𝛾 min𝜎∈S𝑛 dist(𝜎,Q). Define the
following distance which measures the fraction of response pairs
over which two preference matrices {Q,R} ∈ P𝑛 disagree.

dist (Q,R) :=
(
𝑛

2

)−1 ∑︁
𝑖< 𝑗

1
(
(𝑄𝑖 𝑗 > 1/2) ∧ (𝑅𝑖 𝑗 < 1/2)

)
+
(
𝑛

2

)−1 ∑︁
𝑖< 𝑗

1
(
(𝑄𝑖 𝑗 < 1/2) ∧ (𝑅𝑖 𝑗 > 1/2)

)
By Lemma 20 of [37], forQ ∈ P𝑆𝑇𝑛 andR ∈ P𝑛 , we have dist(𝜎,Q) ≤
(1 + 𝛾) dist(Q,R). But note that it is possible that dist (Q,R) = 1 as
it is easy to construct by R that disagrees with Q in every entry by
simply setting R = Q⊤. Now, we may set Q = P and R = Pc for any
algorithm that uses Pc for ranking; specifically, for the adversary
satisfying Assumption 1, we can see by a direct counting argument
that dist (Q,R) ≤ 𝑑 (2𝑛−1−𝑑 )

𝑛 (𝑛−1) which proves the claim. □

3.3 Solution Approach
This part of the paper identifies three scenarios/settings where
missing and adversarially corrupted comparisons can affect the
ranking results. We plan to tackle the three situations detailed in
subsequent sections:
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(1) Fully observed and adversarially corrupted setting: Some
instances of the comparison results are adversarially cor-
rupted. This scenario can happen when data quantity is
prioritized over data quality in the data collection process,
resulting in biased or malicious human feedback. Algorithm
3 RORATRON is proposed to solve this problem.

(2) Partially observed and uncorrupted setting: Not all pairs
of responses are compared. This scenario can happen when
data quality is prioritized over quantity in the data collection
process. Observing all possible comparisons can be expen-
sive and challenging, especially when there are many LLM
responses to compare. Algorithm 4 CORATRON is proposed
to solve this problem.

(3) Partially observed and adversarially corrupted setting: Both
(1) not all pairs of responses are compared, and (2) some in-
stances of the comparison results are adversarially corrupted.
This scenario can happen when data quantity and quality
are not met in the data collection process. This scenario will
likely happen in a large crowd-sourced environment due to
large-scale LLM responses and participants. Algorithm 5
CURATRON is proposed to solve this problem.

4 FULLY OBSERVED ADVERSARIAL
SETTING

4.1 Algorithm
In this section, we answer Question 4. We present our main algorithm
for robust passive ranking from pairwise comparisons in the presence
of adversarial noise in Algorithm 3. The input data consist of the set
of pairwise comparison results ℵ = {(𝑖, 𝑗, {𝑦𝑘

𝑖 𝑗
})}, (𝑖, 𝑗) ∈ [𝑛] × [𝑛],

𝑘 ∈ [𝐾], 𝑦𝑘
𝑖 𝑗
∈ {0, 1}. The algorithm assumes the true rank of𝜓 (P)

as an input parameter; specifically, for the BTL model, we set 𝑟 = 2.
Algorithm 3 calls the following procedures:

(1) Robust PCA (Procedure 1): Note that Step 3 of Algorithm 3
uses a matrix low-rank plus sparse decomposition subrou-
tine. To obtain our recovery guarantee, it is sufficient to
use the robust PCA problem as a black-box method; for
the precise details of this algorithm, we refer the reader
to [30]. In particular, for our analysis, we use the noise-
case guarantees in their paper. This is characterized by a
(strongly-polynomial) running time of𝑂 (𝑛2𝑟2 log(1/𝜖)) and
guarantees 𝜖-recovery of the component matrices under the
conditions of Assumption 1 and Lemma 3.

(2) 𝛾-approximate pairwise ranking procedure (Subroutine 2):
Step 4 of Algorithm 3 calls a constant factor approximate
ranking procedure. Specifically, we use the Copeland pro-
cedure [9] which has a 5-approximation guarantee [10]
and involves sorting the responses according to a score of
response 𝑖 given by

∑𝑛
𝑗=1 1(𝑃𝑖 𝑗 > 1/2).

4.2 Analysis
We begin with a useful short result followed by the statement and
the proof of our main result that, with high probability, we achieve
𝜖–accurate ranking in polynomial time using polynomial number
of samples, despite the presence of adversarial noise. Precisely,
Theorem 1 and Remark 1 address Question 3; Remark 2 addresses

Algorithm 3 RORATRON: Robust Preference Data for Rigorous
Alignment

Input: Comparison dataset ℵ = {(𝑖, 𝑗, {𝑦𝑘
𝑖 𝑗
})}, true rank 𝑟 .

Output: Ranking of 𝑛 responses, �̂� ∈ S𝑛 .
1: Estimate entries of P̂ for 𝑖 ≤ 𝑗 as:

𝑃𝑖 𝑗 =

{
1
𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗

if 𝑖 < 𝑗

1/2 if 𝑖 = 𝑗

2: Set 𝑃𝑖 𝑗 = 1 − 𝑃 𝑗𝑖 for all 𝑖 > 𝑗 .
3: Perform robust PCA: {𝜓 (P), Ŝ} ← RPCA(𝜓 (P̂), 𝑟 ).
4: Using a pairwise ranking procedure after taking the inverse

transform: 𝜎 ← PR(P).
5: return 𝜎 .

Question 1. In this context it is noteworthy that we present the result
for LR models which strictly contain the BTL model while being
much more general [37]; upon proving this result, we specialize it to
the classic BTL model as well (Corollary 1).

Lemma 1 (Some properties of the logit function). Let
𝑎, 𝑏, 𝑐 ∈ (0, 1) such that 𝑐 = 𝑎 + 𝑏. Then, we have,

(1) 𝜓 (𝑐) = 𝜓 (𝑎) +𝜓 (𝑎 + 𝑏) +𝜓 (1 − 𝑎)
(2) 𝜓 (𝑎) +𝜓 (1 − 𝑎) = 0.

Proof. Both follow by using the definition of the logit function
that 𝜓 (𝑎) = log(𝑎/(1 − 𝑎)) and using the property that log(𝑎𝑏) =
log(𝑎) + log(𝑏). □

Theorem 1 (Provably good estimation of ranking in
LR models in the presence of adversarial noise). Let P ∈
P𝐿𝑅 (𝜓,𝑟 )𝑛 be the true preference matrix according to which the
pairwise comparison dataset ℵ = {(𝑖, 𝑗, {𝑦𝑘

𝑖 𝑗
})} is generated for all

responses pairs (𝑖, 𝑗) such that 𝑘 ∈ [𝐾]. Let P̂ be the empirical
preference matrix computed using ℵ. Let S ∈ [0, 1]𝑛×𝑛 be the
adversarial matrix that additively corrupts P̂. Let𝜓 be 𝐿-Lipschitz
in [ 𝑃min

2 , 1 − 𝑃min
2 ] and 𝜓 (P) be 𝜇-incoherent. Let each pair be

compared independently𝐾 ≥ 16384𝜇2 (1+𝛾)𝐿2𝑛2 log2 (𝑛)/𝜖Δ2 times
where Δ = min𝑖≠𝑗

��𝜓 (𝑃𝑖 𝑗 ) −𝜓 (1/2)��. Then, with probability atleast
1 − 1/𝑛3, Algorithm 3 returns an estimated permutation 𝜎 such that
dist(𝜎, P) ≤ 𝜖.

Remark 1 (Computational complexity). In Algorithm 3,
Step 1 takes 𝑂 (𝑛2𝐾) = 𝑂 (𝑛4 log2 𝑛/𝜖) time, Step 3 takes
𝑂 (𝑛2𝑟2 log(1/𝜖)), and Step 4 takes𝑂 (𝑛2+𝑛 log𝑛) time. Thus, putting
together the cost of these main steps, the overall computational
complexity of our robust ranking algorithm for P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 is
𝑂 (𝑛4 log2 𝑛/𝜖).

Remark 2 (Identifying adversarially corrupted pairwise
comparisons). From Step 3 of Algorithm 3, using Theorem 2 of
[30], we also have Supp (̂S) ⊆ Supp(S) and thus we can identify the
corrupted pairwise comparison results.

Remark 3 (Missing data versus adversarially corrupted
data). Note that the adversarial sparse noise we consider subsumes
the setting when comparison results for certain pairs are missing
as in [37] and hence directly applies in that situation. Moreover,
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since the support and magnitude of the corrupted entries of the
preference matrix are unknown, the problem considered in this paper
is harder; consequently, our sample complexity is 𝑂 (𝑛2) as opposed
to 𝑂 (𝑛 poly log𝑛) in their work.

Proof. Let 𝑃𝑖 𝑗 be the empirical probability estimate of 𝑃𝑖 𝑗 . Note
that we compute 𝑃𝑖 𝑗 = 1

𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗

from the given pairwise com-
parison dataset, ℵ = {(𝑖, 𝑗, {𝑦𝑘

𝑖 𝑗
})}. Now, P̂ = P̃ + S. By Lemma 1,

we may write the adversarially corrupted empirical probability es-
timate as 𝜓 (P̂) = 𝜓 (P̃) + S̃ where S̃ = 𝜓 (P̃ + S) + 𝜓 (1 − P̃). We
have 𝜓 (P̃) = 𝜓 (P) + Ñ where Ñ = 𝜓 (P̃) − 𝜓 (P). Now, this noise,
Ñ, is purely due to finite-sample effects which can be controlled
(using concentration arguments given in the inequality 𝜉3 below) by
driving it down to as small a value as we want by ensuring large
enough number of comparisons for each pair. Note that we input
𝜓 (P̂) = 𝜓 (P) + S̃ + Ñ to Subroutine 1 and obtain𝜓 (P) as the output
in Step 3 of Algorithm 3. Hence, using Theorem 2 from [30], ifÑ
∞
≤ 𝜎min (𝜓 (P))/100𝑛, we have,𝜓 (P) −𝜓 (P)

𝐹
≤ 𝜖′ + 2𝜇2𝑟

(
7
Ñ

2
+ 8𝑛
𝑟

Ñ
∞

)
after 𝑇 ≥ 10 log(3𝜇2𝑟𝜎1/𝜖′) iterations associated with Step 1 of
Subroutine 1. Next, we have, with probability at least 1 − 1/𝑛3,𝜓 (P) −𝜓 (P)

𝐹
≤ 𝜖′ + 2𝜇2𝑟

(
7
Ñ

2
+ 8𝑛
𝑟

Ñ
∞

)
𝜉1
≤ 𝜖′ + 32𝜇2𝑛

Ñ
2

𝜉2
≤ 𝜖′ + 32𝜇2𝑛𝜏

𝜉3
≤ 𝑛

√︂
𝜖

1 + 𝛾
Δ

2

where 𝜉1 follows by using 𝑟 ≤ 𝑛 and
Ñ
∞
≤
Ñ

2
, 𝜉2 follows by

substituting for Ñ from Lemma 2 with 𝐾 ≥ 𝐿2𝑛2 log2 𝑛
𝜏2 , and 𝜉3 is ob-

tained using 𝜖′ = 𝑛
√︃

𝜖
1+𝛾

Δ
4 , 𝜏 = min

(
𝜎min (𝜓 (P))/100,

√︃
𝜖

1+𝛾
Δ

128𝜇2

)
.

Then using similar arguments as proof of Theorem 13 in [37], we
obtain our result. □

Lemma 2 (Concentration of sampling noise). Under the
conditions of Theorem 1, let each response pair be compared such
that the number of comparisons per response pair is 𝐾 ≥ 𝐿2𝑛2 log(𝑛)

𝜏2 ;

with probability at least 1 − 1/𝑛3,
Ñ

2
≤ 𝜏 .

Proof. Let 𝐿 be the Lipschitz constant of 𝜓 and set 𝐾 ≥
𝐿2𝑛2 log(𝑛)

𝜏2 . Using the inequality that
Ñ

2
≤ 𝑛

Ñ
∞

,

Pr
(Ñ

2
≥ 𝜏

)
≤ Pr

(Ñ
∞
≥ 𝜏

𝑛

)
= Pr

(
∃(𝑖, 𝑗) :

���𝜓 (𝑃𝑖 𝑗 ) −𝜓 (𝑃𝑖 𝑗 )��� ≥ 𝜏

𝑛

)
≤
∑︁
𝑖, 𝑗

Pr
(���𝜓 (𝑃𝑖 𝑗 ) −𝜓 (𝑃𝑖 𝑗 )��� ≥ 𝜏

𝑛

)
≤
∑︁
𝑖, 𝑗

Pr
(���𝑃𝑖 𝑗 − 𝑃𝑖 𝑗 ��� ≥ 𝜏

𝑛𝐿

)
≤ 1
𝑛3

□

Next, for completeness, we recall the following lemma (proved
in Theorem 8 and Lemma 14 of [37]) which characterizes the
incoherence constant 𝜇 of P ∈ (P𝐿𝑅 (𝜓,2)𝑛 ∩ P𝑆𝑇𝑛 ) in Assumption 1.

Lemma 3 (Incoherence of BTL and LR models). We have
P ∈ (P𝐿𝑅 (𝜓,2)𝑛 ∩ P𝑆𝑇𝑛 ) if and only if𝜓 (P) = uv⊤ − vu⊤ for u ∈ R𝑛+
and v ∈ R𝑛 where u⊤v = 0. Moreover,𝜓 (P) is 𝜇-incoherent where

𝜇 =

√︃
𝑛
2

(
𝑢2

max
𝑢2

min
+ 𝑣

2
max
𝑣2

max

)1/2
where 𝑢min = min𝑖 |𝑢𝑖 |, 𝑢max = max𝑖 |𝑢𝑖 |,

𝑣min = min𝑖 |𝑣𝑖 | and 𝑣max = min𝑖 |𝑣𝑖 |. We also have P𝐵𝑇𝐿𝑛 ⊂
(P𝐿𝑅 (𝜓,2)𝑛 ∩ P𝑆𝑇𝑛 ) since we may set u = 1 where 1 is the all-ones
vector and v = w where w is the BTL parameter vector. In this case,
we may rewrite 𝜇 =

√︃
𝑛
2

(
1 + (𝑤max−𝑤 )2

(𝑤min−𝑤 )2
)

where𝑤 = 1
𝑛

∑𝑛
𝑖=1𝑤𝑖 .

The following corollary makes precise our claim that up to 𝑂 (𝑛2)
response pairs may be subject to adversarial corruption, but our
RORATRON algorithm still recovers a good ranking.

Corollary 1 (Recovery result for BTL model). Consider
P ∈ P𝐵𝑇𝐿𝑛 . Using Assumption 1, let the adversarial matrix be
S ∈ [0, 1]𝑛×𝑛 satisfying ∥S∥0 ≤ 𝑛/1024𝜇2 where 𝜇 is characterized
as in Lemma 3. Then, with probability 1 − 1/𝑛3, the output of
Algorithm 3 with input P̂ computed using ℵ = {(𝑖, 𝑗, {𝑦𝑘

𝑖 𝑗
})} satisfies

and 𝑟 = 2, dist(𝜎, P) ≤ 𝜖.

5 PARTIALLY OBSERVERED ADVERSARIAL
SETTING

In this section, we consider the partially observed and adversarially
corrupted comparison results setting. Both factors can be modeled
in a unified manner by setting the corresponding missing entries of
the preference matrix to zero (or a specific constant to account for
numerical stability). We present our robust ranking algorithm for this
setting in Algorithm 5 – this essentially involves using the ‘OptSpace’
matrix completion algorithm of [24] followed by using the robust
PCA algorithm of [30] as sub-routines. We note at this point that, in
the case when we are confident that the data are collected faithfully
but we do not have the full data to work with, we can use OptSpace
on its own to generate the full preference matrix from the incomplete
one, as presented in Algorithm 4. We show in Experiment 7.3 below
that in such a setting with extremely missing data, we can still
complete the full matrix with minimal error.

While the recent work of [32] considers the incomplete data case,
it leverages extra information provided in the form of side information
(specifically, noiseless and complete item-related features) to derive
recovery guarantees; however, their algorithm is still unable to handle
the presence of pairwise comparisons corrupted in an adversarial
manner as the required assumptions on the noise bounds are violated.
We now derive the recovery guarantees as follows.

Theorem 2 (Provably good estimation of ranking in BTL
model in the presence of adversarial noise as well as
missing data). Consider a similar notation as in Theorem 1 but
let P ∈ P𝐵𝑇𝐿𝑛 . Let Ω ⊆ [𝑛] × [𝑛] be a set of compared response
pairs. Assume Ω is drawn uniformly from all subsets of [𝑛] × [𝑛] of
size |Ω | such that |Ω | ≥ 𝐶′′𝑛 log(𝑛) and let the sparse noise satisfy
∥S∥∞ ≤ Δ𝑤

log(𝑛)
𝐶Δ𝑛

where Δ𝑤 := min𝑖, 𝑗
��𝑤𝑖 −𝑤 𝑗 ��. Let the number of
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Algorithm 4 CORATRON: Complete Preference Data for Rigorous
Alignment

Input: Comparison dataset ℵ = {(𝑖, 𝑗, {𝑦𝑘
𝑖 𝑗
})}, true rank 𝑟 .

Output: Ranking of 𝑛 responses, �̂� ∈ S𝑛 .
1: Estimate entries of P̂ for 𝑖 ≤ 𝑗 as:

𝑃𝑖 𝑗 =


1
𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗

if 𝑖 < 𝑗 and (𝑖, 𝑗) ∈ Ω
1/2 if 𝑖 = 𝑗 and (𝑖, 𝑗) ∈ Ω
1/2 if (𝑖, 𝑗) ∉ Ω

2: Set 𝑃𝑖 𝑗 = 1 − 𝑃 𝑗𝑖 for all 𝑖 > 𝑗 .
3: Set R← OptSpace(𝜓 (P̂)Ω).
4: Using a pairwise ranking procedure after taking the inverse

transform: 𝜎 ← PR(R).
5: return 𝜎 .

Algorithm 5 CURATRON: Complete Robust Preference Data for
Rigorous Alignment

Input: Comparison dataset ℵ = {(𝑖, 𝑗, {𝑦𝑘
𝑖 𝑗
})}, true rank 𝑟 .

Output: Ranking of 𝑛 responses, �̂� ∈ S𝑛 .
1: Estimate entries of P̂ for 𝑖 ≤ 𝑗 as:

𝑃𝑖 𝑗 =


1
𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗

if 𝑖 < 𝑗 and (𝑖, 𝑗) ∈ Ω
1/2 if 𝑖 = 𝑗 and (𝑖, 𝑗) ∈ Ω
1/2 if (𝑖, 𝑗) ∉ Ω

2: Set 𝑃𝑖 𝑗 = 1 − 𝑃 𝑗𝑖 for all 𝑖 > 𝑗 .
3: Set R← OptSpace(𝜓 (P̂)Ω).
4: Use a robust PCA procedure:𝜓 (P) ← RPCA(R).
5: Using a pairwise ranking procedure after taking the inverse

transform: 𝜎 ← PR(P).
6: return 𝜎 .

comparisons per pair be 𝐾 ≥ 𝑐𝑛4/Δ𝑤 . Then with probability at least
1 − 2/𝑛3, Algorithm 5 returns a ranking that satisfies dist(𝜎, P) ≤ 𝜖.

Remark 4 (Robust Estimation of BTL Model in the Par-
tially Observed Case). For the BTL model, Theorem 2 says
𝑂 (𝑛 log𝑛) pairs suffice to estimate the BTL model which matches
bounds from [37]. Further, even in this incomplete comparison data
case, we are able tolerate uniformly random additive sparse noise its
maximum absolute entry scaling as the order of the BTL ‘score-gap’
divided by the number of responses upto logarithmic factors, ie,
𝑂 (Δ𝑤/𝑛).

Proof. From Lemma 3, we have 𝜓 (P) = 1w⊤ − w1⊤ for the
BTL model where𝜓 is the logit function. Clearly, in this case,𝜓 (P)
is a real skew-symmetric matrix of rank 𝑟 = 2. Since it is skew-
symmetric, its eigenvalues, which are the roots of its charateristic
polynomial, are of the form ±𝜆𝑖 for some 𝜆 ∈ R and 𝑖 =

√
−1, and

hence, 𝜎min (𝜓 (P)) = 𝜎max (𝜓 (P)), ie, the condition number of𝜓 (P),
𝜅 = 1. Now, we recall the spectral-lower bound from Corollary 2 of
[18],

𝜎min (𝜓 (P)) ≥
∥𝜓 (P)∥𝐹√︁
𝑟 (𝑟 − 1)

≥
√︂
𝑛(𝑛 − 1)

2
Δ𝑤 (1)

where Δ𝑤 = min𝑖, 𝑗
��𝑤𝑖 −𝑤 𝑗 ��.

Let Ω ⊆ [𝑛]× [𝑛] be a subset of all the response pairs with compar-
ison results among which some might be corrupted by sparse noise,
ie,𝜓 (P̂Ω) = 𝜓 (PΩ) + S̃Ω + ÑΩ . Let T := S̃Ω + ÑΩ . From Theorem 1.2
of [24], we have 1

𝑛

𝜓 (P̂) −𝜓 (P)
𝐹
= 1
𝑛 ∥T +M∥𝐹 ≤ 𝐶𝜅

2 𝑛
√
𝑟

|Ω | ∥T∥2
where M is the noise matrix after obtaining the completed matrix
𝜓 (P̂) from 𝜓 (P̂Ω) using OptSpace. Using triangle inequality and
noting that |Ω | ≥ 𝐶′′𝑛 log(𝑛), the noise may be bounded asÑΩ +M


∞
≤
ÑΩ +M


𝐹
≤ ∥T∥2

√
2𝐶𝑛2

|Ω | +
̃SΩ

𝐹

𝜁1
≤ 𝐶′ 𝑛

log(𝑛)

̃SΩ2
(2)

where 𝐶, 𝐶′ and 𝐶′′ are constants and 𝜁1 is obtained by using the
triangle inequality that ∥T∥2 ≤

̃SΩ2
+
ÑΩ


2
, followed by setting

𝐾 ≥ 𝑐𝑛4/Δ𝑤 for constant 𝑐 and finally using
̃SΩ

𝐹
≤
√
𝑛

̃SΩ2
.

Then, combining Equations 2 and 1, we have if
log(𝑛)
𝐶Δ𝑛

Δ𝑤 ≥
̃SΩ2

=

𝜓 (P̂) −𝜓 (P̃)
2

≥
𝜓 (P̂) −𝜓 (P̃)

∞
≥ 𝐿

P̂ − P̃
∞
≥ ∥S∥∞

where 𝐶Δ is a global constant and using Lemma 2, then we have the
guarantee (along similar lines as that of Theorem 1 that Algorithm 5
returns an estimated permutation which satisfies dist(𝜎, P) ≤ 𝜖. □

6 GENERALIZATION TO OTHER RANKING
MODELS

Related to the BTL model are many other binary choice models [14]
such as the Thurstonian model [40]. In such models, the preference
matrix has been shown to be low-rank under appropriate choices of
𝜓 ; for instance, for the Thurstonian models, the probit function turns
out to be the right choice. For further details, we refer the reader to
the work of [37].

Let 𝑎, 𝑏, 𝑐 ∈ (0, 1) such that 𝑐 = 𝑎 + 𝑏. Then, for any general non-
linear 𝐿-Lipschitz function, we write𝜓 (𝑐) = 𝜓 (𝑎 +𝑏) = 𝜓 (𝑎) +𝜓 (𝑎 +
𝑏)−𝜓 (𝑎). The error may be lower bounded by |𝜓 (𝑎 + 𝑏) −𝜓 (𝑎) | ≥ 𝐿𝑏.
Thus, for any adversarial model wherein we have Pc = P + S, we
have:

𝜓 (Pc) = 𝜓 (P) + (𝜓 (P + S) −𝜓 (P)) = 𝜓 (P) + S̃

where S̃ is also a deterministic sparse corruption matrix with the
absolute value of the non-zero entries lower bounded by 𝐿.min𝑖, 𝑗 𝑆𝑖 𝑗 .
With the appropriate 𝜓 , 𝜓 (P) will be a low-rank matrix and hence
Algorithm 3 and the associated recovery guarantee of Theorem 1
holds.

7 EXPERIMENTS
In this section, we answer Question 5. We now perform simulations in
order to understand the performance of our robust ranking approach
in practice in both general and LLM preference dataset settings.

7.1 Evaluation Criterion
We use several evaluations to assess our proposed methods’ effec-
tiveness against unobserved and adversarial corrupted comparisons.



CURATRON: Complete and Robust Preference Data for Rigorous Alignment of Large Language Models

7.1.1 Normalized Frobenius Error. First, To measure the relative
error between two preference matrices in terms of their elements’
magnitudes, we use the normalized Frobenius error (NFE). NFE
between two matrices 𝑃 and 𝑃 is defined as:

𝑁𝐹𝐸 (𝑃, 𝑃) = ∥𝑃 − 𝑃 ∥𝐹𝑟𝑜∥𝑃 ∥𝐹𝑟𝑜
,

where the Frobenius norm, denoted as ∥𝐴∥𝐹𝑟𝑜 , for a matrix 𝐴 is
calculated by:

∥𝐴∥𝐹𝑟𝑜 =

√√√ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
|𝑎𝑖 𝑗 |2

In this formula, 𝑎𝑖 𝑗 represents the element of the matrix 𝐴 in
the 𝑖th row and 𝑗 th column. The Frobenius norm is the square root
of the sum of the absolute squares of all elements in the matrix.
Thus, the numerator ∥𝑃 −𝑃 ∥𝐹𝑟𝑜 calculates the Frobenius norm of the
difference between the original and reconstructed matrices, and the
denominator ∥𝑃 ∥𝐹𝑟𝑜 calculates the Frobenius norm of the original
matrix. The ratio provides a measure of the relative error normalized
by the magnitude of the original matrix.

7.1.2 Correlation Coefficient. Second, we compute the correlation
coefficient for corresponding elements in these matrices to assess
the similarity between the original matrix 𝑃 and the reconstructed
matrix 𝑃 . The correlation coefficient, denoted as 𝑐𝑜𝑟𝑟 , between the
elements of these two matrices can be defined as:

𝑐𝑜𝑟𝑟 (𝑃, 𝑃) =
∑𝑛
𝑖=1 (𝑃𝑖 − ⟨𝑃⟩)(𝑃𝑖 − ⟨𝑃⟩)√︃∑𝑛

𝑖=1 (𝑃𝑖 − ⟨𝑃⟩)2
√︃∑𝑛

𝑖=1 (𝑃𝑖 − ⟨𝑃⟩)2
,

where ⟨𝑃⟩ and ⟨𝑃⟩ denote the mean values of the elements within
the 𝑃 and 𝑃 matrices, respectively. 𝑛 represents the total number of
elements in each matrix.

This formula quantifies the linear relationship between the matri-
ces’ elements. A correlation coefficient close to 1 indicates a strong
positive linear relationship, whereas a value close to −1 suggests a
strong negative linear relationship. A coefficient around 0 implies no
linear relationship.

7.1.3 Ranking Distance. Third, for ease of reference, we rewrite
the dist (𝜎, P) formula, which evaluates the distance between rankings
obtained by corrupted and recovered matrices, previously defined in
Section ??:

dist (𝜎, P) :=
(
𝑛

2

)−1 ∑︁
𝑖< 𝑗

1
(
(𝑃𝑖 𝑗 > 1/2) ∧ (𝜎 (𝑖) ≻ 𝜎 ( 𝑗))

)
+
(
𝑛

2

)−1 ∑︁
𝑖< 𝑗

1
(
(𝑃 𝑗𝑖 > 1/2) ∧ (𝜎 ( 𝑗) ≻ 𝜎 (𝑖))

)
,

where 𝜎 is the global ranking after applying ranking procedure with
𝑃 .

7.2 Performance of Robust Ranking in General
Setting

First, we begin with the BTL model. We generate synthetic pairwise
comparison data and also adversarial sparse matrix as follows. We

Figure 2: Robust recovery results of the BTL model: we fix 𝜈 = 2
and vary 𝑑 in the left plot; we fix 𝑑 = 100 and vary 𝜈 in the left
plot.

generate the entries of the BTL parameter vector w from N(0, 𝜈2)
followed by generating the ground truth preference matrix from
with 𝑦𝑘

𝑖 𝑗
is sampled for all response pairs (𝑖, 𝑗) for a fixed 𝐾 . The

adversarial sparse matrix S is generated as a skew-symmetric matrix
where each entry is non-zero independently with probability 𝑑/𝑛
followed by generating a value for an entry from𝑈 (5, 10) and then
setting the sign to be positive with probability 1/2; this corruption
matrix is then added to the𝜓 (P) to give𝜓 (Pc) which is then input to
our algorithm; the same Pc is used for the other algorithms as well.

We take the number of responses to be 𝑛 = 500. In plots in
Figure 2, we compare the performance of our RPR approach using
Algorithm 3 against well-known ranking algorithms, such as Rank
Centrality (RC [28], Maximum Likelihood (ML) and Borda Count
(BC) count [23], with special attention to robustness to the noise
model that we consider in this paper. We vary two parameters
namely, 𝜈 , spread of the BTL scores, and 𝑑 , the density of adversarial
corruption matrix. All our results averaged over five runs. We observe
that our algorithm maintains low recovery error in spite of increasing
the problem hardness, thus outperforming previous approaches in all
cases.

7.3 Performance of Robust Ranking in LLM
Preference Dataset

In this illustrative experiment, from the MT-Bench dataset
[48], we collect the data of the first prompt “Compose an
engaging travel blog post about a recent trip to Hawaii, high-
lighting cultural experiences and must-see attractions" and
its six responses from GPT-3.5, GPT-4 [33], Claude-v1
[3], Vicuna-13B [7], Alpaca-13B [39], and LLaMA-13B
[41]. Additionally, we generated nine responses to the same
prompt using Llama-2-70B-chat-hf [42], Falcon-180B-chat
[2], Openchat-3.5 [44], Mixtral-8x7B-Instruct-v0.1
[22], Mistral-7B-Instruct-v0.2 [21], Gemini-pro
[15], Dolphin-2.2.1-mistral-7B [16],
Solar-10.7B-instruct-v1.0 [25], Yi-34B-chat [1] from
Hugging Face’s HuggingChat [20] and LMSYS’s Chatbot Arena
[48]. So we have 𝑛 = 15 responses.

Next, we rank the responses using OpenAI’s GPT-4 Turbo
GPT-4-1106-preview [33]. This ranking helps us create the BTL
parameter vector w. We then sort this vector descendingly for visu-
ally accessible when building the corresponding preference matrix
P ∈ R𝑛×𝑛 . With

(𝑛
2
)

comparisons in P, we randomly remove en-
tries based on a specified deletion probability parameter, 𝑑𝑝, to
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Figure 3: Left: Original matrix. Middle: corrupted matrix. Right:
reconstructed matrix. The corrupted matrix has 10% adversarial
corruptions and 10% of unobserved comparisons. We use our
CURATRON algorithm to successfully recover the original matrix.

simulate unobserved comparisons. We then create an adversarial
skew-symmetric sparse matrix, S, using the given matrix P and an
adversarial corruption probability parameter 𝑎𝑝. When corruption
is applied, it involves randomly selecting a value from𝑈 (−5, 5) and
then adding to the P to give P𝑐 which is then become the input of our
algorithm. It’s important to note that P is a skew-symmetric matrix,
any corruption must be applied to both 𝑖 𝑗 and 𝑗𝑖 values.

Our experiment results visualized in Figure 3 show that 𝑑𝑝 = 10%
and 𝑑𝑎 = 10% can significantly affect the ranking of different models
and the rank of the matrix when performing logit link transformation.
The ranking can get altered quite badly when compared to the original
matrix. Also, the logit link transformation of the corrupted matrix
is high-rank which indicates that there are noises in the matrix. By
using CURATRON to impute the missing comparisons and filter out the
noisy sparse matrix, we successfully reconstruct the original matrix,
which is low-rank when in logit link transformed form. As a result,
we obtain the correct ranking. We also obtain noisy comparisons that
can be used to identify responders with malicious intent and prevent
them from continuing to alter results.

We now examine how our algorithm performs across different
levels of unobserved and adversarially corrupted comparisons. In the
plots shown in Figure 4, we compare the performance of our approach
by varying two parameters, 𝑑𝑝 and 𝑎𝑝. We use NFE, correlation,
and ranking distance as defined earlier in section 7.1. Our results
are averaged over 5 runs. When there is no adversarial noise, we
can recover the original P with no NFE and perfect correlation
and ranking, even if 50% of the comparison data was missing. This
suggests that we may not need to collect all comparisons from humans
to obtain the entire data. We observe that, with 𝑛 = 15, we only need
to obtain about 50 − 55% of the 105 comparisons and fill in the rest
with our algorithm to achieve a strict 0% NFE, perfect correlation,
and ranking. On the other hand, when missing data is absent, our
algorithm performs well with NFE of approximately 6%, even when
35% of the comparison data is adversarially corrupted. When both
adversarial noise and missing data are present, we can achieve a low
NFE of around 4% when both 15% of the comparison data is missing
and 15% of adversarially corrupted comparisons (30% in total) affect
P.

Figure 4: Average over 5 runs of reconstruction error, correla-
tion, and distance between reconstructed ranking and original
ranking for different percentages of unobserved and adversarial
comparisons.

8 CONCLUSION
Our study examines how missing information and distorted feedback
can impact LLMs, potentially compromising their performance in
terms of alignment with human values. We have proposed a robust
algorithm for provably correct and efficient ranking responses in the
BTL, LR, and general binary choice models. This robust ranking data
is then input in the PL step. Further, we also handled the partially
observed setting, wherein only some response pairs are compared,
by integrating matrix completion techniques into our robust learning
algorithm. In all cases, we provided statistical and computational
guarantees using novel techniques. Through our comprehensive
analysis, we hope to contribute to the ongoing discussion on AI
safety by helping to create and scale LLMs/AGI models that align
with human values and expectations. Some future research directions
include tightening the recovery results for partially observed settings
under weaker conditions (possibly using noisy-case extensions of
[46]), exploring other notions of adversarial noise, and understanding
the minimax optimal rates for ranking estimators under various noise
models. We also plan to study the parametric non-active pairwise
ranking setting, studying lower bounds and practical algorithms in
the active setting similar to [17]. Furthermore, it would be interesting
to investigate whether we can extend this approach to solve the entity
corruption problem in retrieval models, as shown in [27]. Another
research direction could be defining an alignment framework that
expands DPO to various objective functions based on Rank Centrality
[29]. Finally, we aim to examine the relationship between robust PL
and model capacity, as this can shed light on the trade-offs between
model complexity and generalization performance.
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