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ABSTRACT

This paper addresses the challenges of aligning large language
models (LLMs) with human values via preference learning (PL),
focusing on incomplete and corrupted data in preference datasets.
We propose a novel method for robustly and completely recalibrating
values within these datasets to enhance LLMs’ resilience against the
issues. In particular, we devise a guaranteed polynomial time ranking
algorithm that robustifies several existing models, such as the classic
Bradley—Terry—Luce (BTL) [5] model and certain generalizations
of it. To the best of our knowledge, our present work is the first to
propose an algorithm that provably recovers an e-optimal ranking
with high probability while allowing as large as O(n) perturbed
pairwise comparison results per model response. Furthermore, we
show robust recovery results in the partially observed setting. Our
experiments confirm that our algorithms handle adversarial noise and
unobserved comparisons well in both general and LLM preference
dataset settings. This work contributes to the development and scaling
of more reliable and ethically aligned Al models by equipping the
dataset curation pipeline with the ability to handle missing and
maliciously manipulated inputs.

1 INTRODUCTION

Large Language Models (LLMs) are highly advanced Artificial
Intelligence (AI) systems capable of understanding, interpreting, and
generating languages. The integration of Al chatbots like ChatGPT
into our daily lives and businesses has had a profound impact on
both society and industries [12]. These models have evolved from
being specialized tools in specific fields to versatile assets that
are increasingly applied in everyday activities and diverse work
environments [31]. However, the success of GPTs/LLMs depends
not only on their ability to generate responses and perform tasks well
but also on their alignment with human values and expectations.

The prevalent method for aligning AI/LLMs currently involves
preference learning (PL) through RLHF or Reinforcement Learning
from Al Feedback (RLAIF) [26] using Proximal Policy Optimization
(PPO) [38], or alternatively, employing Direct Preference Opti-
mization (DPO) [35]. While PPO is a reinforcement learning (RL)
technique within the RLHF pipeline, DPO directly integrates human
preferences into the LLMs.

These techniques rely on collecting and curating high-quality
pairwise human preference data, which presents several challenges.
Gathering human feedback is slow and expensive and often results in
incomplete or imperfect data [4, 26]. Furthermore, participants may
intentionally provide inaccurate or harmful feedback due to malicious
intentions, as pointed out by [6]. These factors can lead to unintended
consequences in estimating rankings from preference datasets from
models such as BTL. They pose a considerable challenge in ensuring
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Figure 1: CURATRON corrects incomplete and adversarially
corrupted preference data to improve RLHF/DPO alignment
results compared to using the raw initial preference data.

the integrity and reliability of the preference datasets used for
aligning LLMs, especially when scaling up the alignment process
with large-scale responses and participants.

Approaching the issues, we consider the following learning prob-
lem. Suppose there are n responses we wish to order based on a notion
of comparison, between every pair of responses, with probabilistic
outcomes. Further, we are given a set, N = {(i, j, {yfj})}, consist-
ing of K independent pairwise comparison outcomes, denoted by
{yfj} € {0,1}, k € [K], between pairs of responses (i, j) C [n] x [n],
a significant proportion of which might be corrupted by an adversary.
In this passive learning setting, the concrete questions we wish to
address are:

(1) Is it possible to identify the pairs whose comparison results
were corrupted by an adversary?

(2) Having identified the corrupted results, as desired, is it
possible to filter them out while computing a global ranking
of the n responses?

(3) Is this task tractable statistically and computationally?

(4) If so, is it possible to construct a provably correct and
efficient algorithm, and what are the associated properties?

(5) Further, does it work well in practice when we may also
encounter unobserved data?

Our Contributions: We systematically answer the above questions
in the affirmative. Specifically, our contributions are as follows.

(1) Problem formulation: We give a generic definition of (addi-
tive) adversarial noise, which can be handled for a broad class
of statistical models, including the classic BTL model and
also certain extensions of it such as the general Low—Rank
(LR) models [37]. As is the case with standard estimation
techniques, if the noise is not modeled and handled well, we



show that the quality of the estimated ranking could be quite
bad, by quantifying the error of the estimated ranking with
respect to the best possible ranking.

(2) Algorithms & guarantees:

e Under certain (information-theoretically tight) identifi-
ability assumptions on the properties of the adversary,
we develop a correct and efficient ranking method,
Robust Preference Data for Rigorous Alignment (RO-
RATRON)), that guarantees e-accurate high-probability
learnability in a manner that is ‘robust’ and oblivious
to the effects of the adversary. Our learning algorithm
is provably characterized by polynomial time computa-
tional complexity.

e In practice, it is often the case that not all pairs are
compared, and even the observed pairwise comparison
data could be adversarially corrupted — we also develop
Complete Robust Preference Data for Rigorous Align-
ment (CURATRON) and characterize the conditions
for guaranteed robust recovery in this scenario. This re-
sults in a practical implication of enhancing preference
data collection efficiency by automatically generating
complete datasets from limited missing preference data.

(3) Experiments: Finally, we support our theoretical results
by showing robust ranking results on both synthetic and
real-world experiments. Our experiments demonstrate the po-
tential of our method in helping create large-scale AI/LLMs
that are more accurately aligned with human values using
minimal human effort as we achieved high reconstruction
accuracy despite severe data missing and corruption.

2 RELATED WORK

‘We now briefly present relevant work in: (1) LLM alignment with PL
from human feedback, (2) ranking models and ranking algorithms
that handle noise, and (3) robust subspace recovery methods, which
will be needed for us to prove recovery results for ranking.

LLM Alignment with PL from human feedback: PL was initially
developed to train agents in simulated environments to perform
nuanced behaviors that are hard to define but easy to observe and
recognize [8]. It has recently been found successful in aligning LLMs
to human intentions and values such as harmfulness, helpfulness,
factuality, and safety. Some of the methods of PL in LLMs are
RLHF [34], RLAIF [4, 26], DPO/y/PO [35, 43, 47], and SLiC-HF
[47]. However, these methods assume that there is high-quality
human supervision through pairwise/ranking preference data, but in
practice, this is often not the case [6]. Recent works such as KTO [13]
also attempt to eliminate the need for pairwise human preferences,
requiring only binary feedback on LLM outputs.

Ranking Models: In the BTL model, item i has an associated
score w;; then, the probability that item i is preferred over j is given
by Pij =e ™ /(e™™ + e~ ") where w € R" is the BTL parameter
vector to be estimated from data; here, P € R™ " is called the
‘preference matrix’. A closely related model, in the non-active setting,
is the recently proposed LR model [37] wherein a generic class of
preference matrices is characterized to be those having low rank
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under transformations using certain functions; specifically, for BTL-
like models, the logit function defined as ¥/(x) = log (x/(1 — x))
turns out to right choice as shown in their paper. However, while
their model accounts for missing information, they do not consider
the harder problem of handling adversarial noise. Several robust
ranking heuristics have been proposed (for example, [45, 49]) but
these approaches do not have theoretical guarantees associated with
them. The Sync-Rank algorithm, for handling different noise models
as compared to the one considered in the preset work, was proposed
in [11] and is based on spectral techniques. Another related work is
[36] which proposes the so-called ‘Generalized Low-Noise’ (GLN)
condition that Vi # j, Pij i Pji =}, apPhj i} _; anPy; for
a € R™. When ay, = 1, Yh they analyze the sample complexity and
show convergence properties of various popular ranking algorithms
like:

(1) Maximum-- Likelihood (ML): this entails solving

argmaxy j(pij(Wj—wi)—log(1+exp(wj~—wi))) where
W € R" is the BTL parameter vector and k j is the empirical
preference matrix.

(2) Rank Centrality (RC) [28]: here, one sorts items by their
scores which are computed as the stationary distribution of
an appropriately normalized empirical preference matrix;
this approach has a known sample complexity guarantee of
O(nlog(n)).

(3) Borda Count (BC) [23]: this heuristic involves ranking an
item according to the fraction of times it beats other items.

For the general case a (which previous methods fail to handle),
they also propose a noise-tolerant SVM-based method for rank
aggregation. However, in the adversarial setting, we consider in
this paper, GLN could be violated and hence requires a different
algorithmic approach and analysis.

Robust Subspace Recovery: 1t is well-known that Principal Com-
ponent Analysis (PCA), a ubiquitous technique for subspace identifi-
cation, is not robust to outliers; this may be attributed to the fact that
PCA is an Ly optimization problem due to which grossly corrupted
data points may perturb and skew the eigenvectors spanning the
maximum variance subspace of the data points significantly.

The Robust PCA (RPCA) problem [30] addresses the following
question: suppose we are given a data matrix M which is the sum of an
unknown low-rank matrix L and an unknown sparse matrix S, can we
recover each of the component matrices? While several works [19, 46]
analyze this problem, it is shown in [30] that, under information-
theoretically tight assumptions, a simple iterative algorithm based on
non-convex alternating projections of appropriate residuals provably
yields an e-accurate solution in O(log(1/¢)) iterations with an overall
computational complexity of O(n?r?log(1/€)) where r is the rank
of L. We will use this result, in particular, to derive guarantees for
our ranking problem.

3 PROBLEM SETUP AND SOLUTION
APPROACH

3.1 Notation

We first define some notation. We denote the set of all permutations
of n LLM responses/items as Sy. If not specifically defined, we use
lower-case letters for scalars, upper-case letters for global constants,
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lower-case bold-face letters for vectors and upper-case bold-faceProcedure 1RPCA: Robust Principal Component Analysis
letters for matrices; speci callyp denotes a preference matrix. Let Input: M=L , S, rankAofL .

P- =P 2 »01¥2 “|%9, Y%9s= 1gdenote the set of all pairwise Output; B ’

preference matrices over responses. Let the set of stochastic- ;. gojve the following optimization problem using Algorithm 1 of

transitive matrices be0 = fP 2 P=j%gj 102%. j 12 ) [30]:

%. i 1e2g. Let the set preference matrices described by the BTL .

model beP)! = fP2 P_jow 2 R= s.t.4 Fee14 Fo_4 Foog | et fo-Bg=argminkm L Sk

k :»01% 7'R be a strictly increasing b%ectivelipschitz function strankle AkSk, 3
and de ne the class of low-rank preference matrices with respect to

k asPlzl KR —tpo P=jranklk 1P°°  AgwhereA2 =Y when we 2: return R

apply such a transformation to a matrix, it is applied entry-wise. In
this paper, we takie to be the logit function.

For any matrixM 2 R° =, let the innity norm be de-  Procedure 2PR: {Vapproximate) Pairwise Ranking
noted bykMIal, = max.9" g9, the Frobenius norm be denoted |nput: Preference matrifl 2 R~ =.
t—t— . o
by kMk = 3, 94" 2o the spectral norm be denoted by Output: Rankingb.

1: ComputeB8s k& 11 goj 1e20.

kMk, = ma = X~ My. Denoting the indicator function by, de-
2 Xy2R y g i 2: return B Sortve.

ne the zero norm of a matrix to be the maximum anmber of non-zero
elementis in any row/column, iEMky = maxtmaxg g9 11" gg<
OPemadg 3:111" 89< 0°°. Let the Singular Value Decomposition

(SVD) of a square matrix be given by = U V> whereUsV 2 R= A question is answered by the following proposition which precisely
are orthonormal matrices (whose columns are singular vectors) andquanti es how bad a ranking could be when an algorithm uses the
2 RA Ais the diagonal matrix of singular values. Ndwis said corrupted pairwise preference matrix. The key idea is to construct
to be" -incoherent ifmax maxg e§U ,omag egv ) o= an adversary that intentionally ips true comparison results.
whereegdenotes th& basis vector ifR=. Also, letf may = maxg gg Claim 1 (Upper bound on estimation error ). Under As-
andf min := ming gg sumption 1 it is possible thalistfy P = $ 11°,
We de ne the distance between a permutatior? S- and a
preference matri® 2 P= as: Proof. Assume that we are exactly given the entries of the
_ 16 preference matrix as opposed to sampling them. Note that in order
distfe P° := 5 1 19g9j le20Mn1f1® f1Qpo to estimate a ranking from a given preference matrix, we still need
8v9 to use a pairwise ranking procedure. beR S-= be the output of
_ 16 any Pairwise Ranking (PR) procedure with respect to an underlying
R 5 1 Wggj le22 1f1Q  f18° preference matrixQ 2 P-. For a constan®Vj 1, b is said to
8Y9 beWapproximate ifdist'fr Q° Wmin; »g_ distife Q°. De ne the
Note that the above loss function basically is the number of pairs following distance which measures the fraction of response pairs
on which the ordering with respettandP di er divided by the over which two preference matricéQ-Rg 2 P- disagree.
number of ways to choose two out sfresponses. Finally, let _ 16
%nin = Ming<9%o0and =mingo k198§ Kk'1+2°. dist1QeRe := 5 1 1&ggj 1e2PN1' ggV¥ 1e2®
8v9
3.2 Characterization of the Adversary 18
The following (weak) assumption characterizes the properties of the - 1 1&ggY 1e2°" 1" ggj 1o2°

adversary. We shall see in the next section that it is information- 8v9
theoretically tight in order to guarantee recovery in the solution 0 e o
approach that we propose. Note that this is a deterministic assumption'By Lemma20ofg7],forQ 2 P2 andR 2 P-, we havalisth Q

. . o . .11 WdisttQeR°. But note that it is possible thdtst1Q*R° = 1 as
in particular, we do not have any distributional assumptions regarding it is easy to construct big that disagrees witkp in every entry b
the locations, the signs, or the magnitudes of the corruptions, and y 9 y y oy

) simply settingR = Q”. Now, we may se@ = PandR = P* for an
hence is very general. algc?ri){hm th(':?tqu::,(aﬁ’C for ranking; >s/peci cally, for the advers;/ry
Assumption 1. The (additive) adversarial noise which corrupts  satisfying Assumption 1, we can see by a direct counting argument
a " -incoherent preference matrik 2 p. ** is modeled by a  thatdist’Q-R° % which proves the claim.
skew-symmetric sparse mat®so that the corrupted preference
matrix P° 2 P= is given byP® = P, S We assume the (deterministic) 3.3 Solution Approach

iti Y = Y e 2 . . . . .
bounded degree condition thisBg 3 Y =such3 Y =512 “A This part of the paper identi es three scenarios/settings where

whereA =, missing and adversarially corrupted comparisons can a ect the
So, why do existing non-robust algorithms not recover the true re- ranking results. We plan to tackle the three situations detailed in
sponse ordering in the presence of an adversarial noise soUH&s? subsequent sections:



Son The Nguyen, Niranjan Uma Naresh, and Theja Tulabandhula

(1) Fully observed and adversarially corrupted setti®@pme Algorithm 3 RORATRON:Rabust Reference @ita for Rigorous
instances of the comparison results are adversarially cor-Alignment
rupted. This scenario can happen when data quantity is
prioritized over data quality in the data collection process,
resulting in biased or malicious human feedback. Algorithm
3 RORATR@iproposed to solve this problem.

Input: Comparison dataséd= 18« 9‘~§Q°g true rankA
Output: Ranking of= responsed) 2 S-.

1: Estimate entries d?EforE} 9as:
I
1

(2) Partially observed and uncorrupted settingot all pairs - .—17gg If 8Y 9
of responses are compared. This scenario can happen when 9= 102 ' if8=9
data quality is prioritized over quantity in the data collection
process. Observing all possible comparisons can be expen- 2; Setlgg=1 ggforall8; 9
sive and challenging, especially when there are many LLM 3. perform robust PCAfk 1Pol8g ~ RPCAk 1Poe &,
responses to compare. AlgorithnCORATR@\proposed 4: Using a pairwise ranking procedure after taking the inverse
to solve this problem. transformb  PRIP®.
(3) Partially observed and adversarially corrupted settifpth 5 return b.
(1) not all pairs of responses are compared, and (2) some in-
stances of the comparison results are adversarially corrupted.
This scenario can happen when data quantity and quality Question 1. In this context it is noteworthy that we present the result
are not met in the data collection process. This scenario will for LR models which strictly contain the BTL model while being
likely happen in a large crowd-sourced environment due to much more generaB[7]; upon proving this result, we specialize it to
large-scale LLM responses and participants. Algorithm 5 the classic BTL model as well (Corollary 1).
CURATR@Noroposed to solve this problem. Lemma 1 Some properties of the logit function ). Let
Oe1e2 10+1° such thal =0, 1. Then, we have,
4 FULLY OBSERVED ADVERSARIAL (1) k22 =k10°, k20, 1°, k1 0°
SETTING (2) k20, k11 0°=0.
4.1 Algorithm Proof. Both follow by using the de nition of the logit function

In this section, we answer Question 4. We present our main algorithm thatk *0° = log'0«*1  0°° and using the property th&ig!01° =
for robust passive ranking from pairwise comparisons in the presencelog*0° , log*1°.
of adversarial noise in Algorithm 3. The input data consist of the set

L . . Theorem 1 Provably good estimation of ranking in
of pairwise comparison resul@= {18+ Fe-; g°g 1892 =% =%

_ LR models in the presence of adversarial noise ). LetP2
2 » Y542 fO1g. The algorithm assumes the true rank épP° p! KA o the true preference matrix according to which the

as an input parameter; speci cally, for the BTL model, weAst2. pairwise comparison datas@= {18+ Je; g°gis generated for all

Algorithm 3 calls the following procedures: responses pair$8e 9such that: 2 » ¥ LetP be the empirical

(1) Robust PCA (Procedure 1Note that Step 3 of Algorithm 3 preference matrix computed Usir@ Let S 2 1% = be the

uses a matrix low-rank plus sparse decomposition subrou- . . o . .
P P P adversarial matrix that additively corrup® Letk be! -Lipschitz

tine. To obtain our recovery guarantee, it is sucient to | Yo Yonin 1 s 7 )
use the robust PCA problem as a black-box method; for " »72"*1 =3"¥sandk*P° be "-incoherent. Let each pair be

the precise details of this algorithm, we refer the reader compared independently 16384211, ! 2=2Jog?1=Cn 2times

to [30]. In particular, for our analysis, we use the noise- Where =minggk%§ k*1+2°. Then, with probability atleast

case guarantees in their paper. This is characterized by al 1°=3, Algorithm 3 returns an estimated permutatirsuch that

(strongly-polynomial) running time & 1=242 log*1+n°° and disttb P n.

guarantees-recovery of the component matrices under the Remark 1 (Computational complexity ). In Algorithm 3,

condmon_s of Assumption 1 e_md Lemma 3. _ Step 1 takes$i=2 © = $1=4|og2=en® time, Step 3 takes
(2) Wapproximate pairwise ranking procedure (Subroutlpe 2): $ 1=2/2|0g'1+n°°, and Step 4 takek?=2, =log=Ctime. Thus, putting

Step 4 of Algorithm 3 calls a constant factor approximate  ogether the cost of these main steps, the overall computational

ranking proce_dure. Speci cally, we use the Copeland pro- complexity of our robust ranking algorithm fét 2 p. s
cedure 9] which has a5-approximation guaranted.(] $ 1=4[ogP=er0

and involves sortir?g the responses according to a score of
respons@given by g ; 11%gj 1+2°. Remark 2 (Identifying adversarially corrupted pairwise
comparisons ). From Step 3 of Algorithm 3, using Theorem 2 of
4.2 Analysis [30], we also haveSupp®  SuppS and thus we can identify the

We begin with a useful short result followed by the statement and corrupted pairwise comparison results.

the proof of our main result that, with high probability, we achieve Remark 3 (Missing data versus adversarially corrupted

n accurate ranking in polynomial time using polynomial number data ). Note that the adversarial sparse noise we consider subsumes
of samples, despite the presence of adversarial noise. Preciselythe setting when comparison results for certain pairs are missing
Theorem 1 and Remark 1 address Question 3; Remark 2 addresseas in [37] and hence directly applies in that situation. Moreover,
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since the support and magnitude of the corrupted entries of the Next, for completeness, we recall the following lemma (proved
preference matrix are unknown, the problem considered in this paper in Theorem 8 and Lemma 14 o8T]) which characterizes the
is harder; consequently, our sample complexit$ 1s2° as opposed  incoherence constantof P 2 P> "%\ P 0 °in Assumption 1.
to $ 1=poly log=° in their work.
Lemma 3 [ncoherence of BTL and LR models ). We have
Proof. Let%ggbe the empirical probability estimate %9 Note p21pl ®Z\p 0 cjfand onlyifk PP = uv> wu” foru 2 R

that we comput®go= 1 . -1 ~gofrom the given pairwise com-  andv 2 R™ whereu”v = 0. Moreoverk 1 is * -incoherent where

. . 102
parison datase@= 8 93 »°g Now,P=®_ S ByLemma 1, = D2 Ela L .

. i 5 . . = max X h . = s = s
we may write the adversarially corrupted empirical probability es- 2D, Ba erélinin = Ming |0y, Dinas = maxs Dyl
timate ak 1P° = k16° SwhereS =k k6 & k11 €°. We Bnin = MingjBgj and Bnax = mingjEj. We also haveP)!
havek 1 = k1P R whereN = k1 k1P°. Now, this noise, 1Pi‘ the2e \P 9 2 since we may set = 1 wherel is the all-ones

R, is purely due to nite-sample e ects which can be controlled  vector andv = w wherew is the BTL parameter vector. In this case,
(using concentration arguments given in the inequaktpelow) by we mav rewrite = = 1 Fmax Fo2 wherek=1' = F

driving it down to as small a value as we want by ensuring large y 2 7 g B2 = &8
enough number of comparisons for each pair. Note that we input
k1o =k1P° & R to Subroutine 1 and obtakitP® as the output

in Step 3 of Algorithm 3. Hence, using Theorem 2 froB][ if

N L f mink 1P°°+106-, we have,

The following corollary makes precise our claim that ubte=2°
response pairs may be subject to adversarial corruption, but our
RORATRON algorithm still recovers a good ranking.

Corollary 1 ( Recovery result for BTL model ). Consider
8= 8 P 2 P2' . Using Assumption 1, let the adversarial matrix be
A1 S2 0 1% = satisfyingkSk, =+10242where’ is characterized
as in Lemma 3. Then, with probabiliy 1s=3, the output of
Algorithm 3 with inpu® computed using@= f18¢ Fe; gOgsatis es
andA= 2, dist'b P°  n.

ke ke n? 22A7 R ,

after)  10logt3 2Afien® iterations associated with Step 1 of
Subroutine 1. Next, we have, with probability at lehst 1+=3,

ki ke 0, 22A7 R ,E R
2 A 1 5 PARTIALLY OBSERVERED ADVERSARIAL
b b,
"0 32 R0, 32 2= SETTING
r 2 In this section, we consider the partially observed and adversarially
b - n _ corrupted comparison results setting. Both factors can be modeled
1, w2 in a uni ed manner by setting the corresponding missing entries of
. _ the preference matrix to zero (or a speci ¢ constant to account for
whereb follows by usingA  =and R 1 R 2’ by follows by numerical stability). We present our robust ranking algorithm for this
substituting foRl from Lemma 2 with 1 2=2log”= , andbg is ob- setting in Algorit.hm 5 thi; essentially involves using the "OptSpace'

) T e - w1 % 4— matrix completion algorithm ofZ4] followed by using the robust
tained using’” == 17,9 = Min fmin’k *P*°108 11587 - PCA algorithm of B0] as sub-routines. We note at this point that, in
Then using similar arguments as proof of Theorem 13, [we the case when we are con dent that the data are collected faithfully
obtain our result. but we do not have the full data to work with, we can use OptSpace

on its own to generate the full preference matrix from the incomplete
one, as presented in Algorithm 4. We show in Experiment 7.3 below
h‘[hat in such a setting with extremely missing data, we can still

Lemma 2 Concentration of sampling noise ). Under the

conditions of Theorem 1, let each response pair be compared suc!
1 2=2|gg1=0

that the number of comparisons per response pair is —c=—; complete the full matrix with minimal error.
with probability at least.  1e=3, R g. . While the recent work 9f32] considgrs the incompllete.data case,
2 it leverages extra information provided in the form of side information
Proof. Let! be the Lipschitz constant & and set (speci cally, noiseless and complete item-related features) to derive
2_2 —o i . . . .
1 %=2logt=0 Using the inequality that =R, recovery guarantee;, hpwever, thel.r algorithm is still ynable to handlle
2 1 the presence of pairwise comparisons corrupted in an adversarial
g manner as the required assumptions on the noise bounds are violated.
Pr N g Pr R = .
2 1 = We now derive the recovery guarantees as follows.
- . g
=Pr 918-9: kg ki%¢ = Theorem 2 Provably good estimation of ranking in BTL
O Pro k059 Kk1%g g model in the presence of adversarial noise as well as
8e9 8 = missing data ). Consider a similar notation as in Theorem 1 but
o) 1 letP2 P)' . Let » =Yy »Ybe a set of compared response
Pr %59 %9 % = pairs. Assume is drawn uniformly from all subsets ofY. sYof
8+9 = - sizej jsuchthaf j 0 |pg1=0 and let the sparse noise satisfy

kSkq £ 99° \vhere ¢ := ming.gFg Fg. Let the number of
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Algorithm 4 CORATRON:Complete Peference @ta for Rigorous where g =ming.oFg Fg.
Alignment Let  »=Y >x¥be asubsetof all the response pairs with compar-
] . — . ison results among which some might be corrupted by sparse noise,
Input: Comparison dataséd= f18 JFe-, g°g true rankA
P ) ba @ 80 ek o=kiPp o & R .LetT:=% _ R .FromTheorem1.2
Output: Ranking of= responsed} 2 S-.

1. Estimate entries d®for8 9as: of [24], we haveé kipo kP = 51 KT, Mk " 221'_?ka2

whereM is the noise matrix after obtaining the completed matrix
k 1 fromk ¥ ° using OptSpace. Using triangle inequality and

P
§1° _ o if8Y9and8.92

o= _ 102 if 8= 9and'8+92 notingtha j  %%log!=°, the noise may be bounded as
> 102 if 18+ 98 P5_2
R M R M KTk —— , &
2. Settgg=1 Ypgforall8j 9 1 i
3 SetR  OptSpacék tpo o, a4 = s @
4: Using a pairwise ranking procedure after taking the inverse log=° 2
transfortr)nb PRRC. where , %and %are constants and is obtained by using the
5: return b. triangle inequality thakTk, & iy Rl , followed by setting
4, f =
Algorithm 5 CURATRON: Complete Robst Rreference @ia for 2="  for constan@ and nally using € =%
Rigorous Alignment Then, combining Equations 2 and 1, we have if
Input: Comparison dataséd= f18e 9‘-§3$g°g true rankA |°glfo E & = kipo Kieo
Output: Ranking of= responsed} 2 S-. B 2 2
1. Estimate entries dPfor8 9as: kipe kipo L P e L kS
I . -
% 1 o if8Y9and18.92 where s a global constant and using Lemma 2, then we have the
Poo=  1¢2 if 8= 9and18.92 guarantee (along similar lines as that of Theorem 1 that Algorithm 5
2 1e2 if 18098 returns an estimated permutation which satislést'f> P° n.
2. Setgo=1 Yggorall8j Q 6 GENERALIZATION TO OTHER RANKING
3 SetR  OptSpacék 1o ©, MODELS
4: Use arobust PCA procedutetP°  RPCA'RC. Related to the BTL model are many other binary choice modefs [
5: Using a pairwise ranking procedure after taking the inverse such as the Thurstonian model [40]. In such models, the preference
transformb  PR!P°. matrix has been shown to be low-rank under appropriate choices of
6: return b. k; for instance, for the Thurstonian models, the probit function turns
out to be the right choice. For further details, we refer the reader to
_ _ _ = the work of [37].
comparisons per pairbe 2= . Then with probability at least Let0s 122 10+1° such tha = 0, 1. Then, for any general non-
1 2=3, Algorithm 5 returns a ranking that satis etistif» P> n. linear! -Lipschitz function, we writé 120 =k 10, 1° =k 10°  k 10,
Remark 4 (Robust Estimation of BTL Model in the Par- 1° k10°. The errormay be lower boundedjgy0, 1° k0% !1.

tially Observed Case ). For the BTL model, Theorem 2 says Thus, for any adversarial model wherein we h&%e= P, S we

$ 1=log=" pairs su ce to estimate the BTL model which matches Nave:

bounds from 37]. Further, even in this incomplete comparison data kipfo=k1po 1kiP & kiPP=Kk!lP &

case, we are able tolerate uniformly random additive sparse noise its . L i .
maximum absolute entry scaling as the order of the BTL “score-gap' where$Sis also a deterministic sparse corruption mat_rlx with the
divided by the number of responses upto logarithmic factors, ie, 2PSolute value of the non-zero entries lower bounded bying.d 89

1 pe0 With the appropriat& , k 1P° will be a low-rank matrix and hence
Algorithm 3 and the associated recovery guarantee of Theorem 1
Proof. From Lemma 3, we have!P = 1w~ w1> for the holds.

BTL model wherek is the logit function. Clearly, in this cade!P°
is a real skew-symmetric matrix of ra#k= 2. Since it is skew- 7 EXPERIMENTS

symmetric, its eigenvalues, which are the roots of ity charateristic |n this section, we answer Question 5. We now perform simulations in

polynomial, are of the form_8for some_2 Rand8=" 1, and order to understand the performance of our robust ranking approach
hencef mink *P°° = f max'k tP°°, ie, the condition number &f1F°, in practice in both general and LLM preference dataset settings.
A = 1. Now, we recall the spectral-lower bound from Corollary 2 of
[18], r 7.1 Evaluation Criterion
ke Pk siz 0 ~ e .
fmink 1P° B . @ We use several evaluations to assess our proposed methods' e ec

"NA D 2 tiveness against unobserved and adversarial corrupted comparisons.
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7.1.1 Normalized Frobenius Error. First, To measure the relative
error between two preference matrices in terms of their elements'
magnitudes, we use the normalized Frobenius error (NFE). NFE
between two matricesband%is de ned as:

— k‘%) %(A>
#1098 = ——— "o
’ KK >
where the Frobenius norm, denotedkak a>, for a matrix is
calculated by: Figure 2: Robust recovery results of the BTL model: we xa =2
and vary 3 in the left plot; we x 3 = 100and vary a in the left
Y & plot.
k ka>= jOg 42
81 91

generate the entries of the BTL parameter vestérom N1 0» &2°
followed by generating the ground truth preference matrix from
with ~é9is sampled for all response pait®s 9for a xed . The
adversarial sparse matr8is generated as a skew-symmetric matrix
where each entry is non-zero independently with probalShty
followed by generating a value for an entry fréni% 1 and then
setting the sign to be positive with probability2; this corruption
matrix is then added to tHelP? to givek 1P°® which is then input to
our algorithm; the same° is used for the other algorithms as well.
7.1.2 Correlation Coe cient. Second, we compute the correlation We take the number of responses to=he 500 In plots in
coe cient for corresponding elements in these matrices to assess Figure 2, we compare the performance of our RPR approach using
the similarity between the original matr#and the reconstructed  Algorithm 3 against well-known ranking algorithms, such as Rank
matrix% The correlation coe cient, denoted &>Afetween the Centrality (RC R8], Maximum Likelihood (ML) and Borda Count

In this formula,Oggrepresents the element of the matrixn
the&h row and@h column. The Frobenius norm is the square root
of the sum of the absolute squares of all elements in the matrix.
Thus, the numeratd® %k a> calculates the Frobenius norm of the
di erence between the original and reconstructed matrices, and the
denominatoik%k > calculates the Frobenius norm of the original
matrix. The ratio provides a measure of the relative error normalized
by the magnitude of the original matrix.

elements of these two matrices can be de ned as: (BC) count R3], with special attention to robustness to the noise
_ 511% h%°1% hoe model that we consider in this paper. We vary two parameters
2>AB% = ¢ = H— . namelya, spread of the BTL scores, aBdthe density of adversarial
51'% h%°2 o 9% hoe? corruption matrix. All our results averaged over ve runs. We observe

that our algorithm maintains low recovery error in spite of increasing
the problem hardness, thus outperforming previous approaches in all
cases.

wheret? andh denote the mean values of the elements within
the%and%matrices, respectively. represents the total number of
elements in each matrix.

1:h|s formula quanti es_the Imea_r relanonshlp b_etween the matri- 7.3 Performance of Robust Ranking in LLM
ces' elements. A correlation coe cient close foindicates a strong
positive linear relationship, whereas a value closelsuggests a Preference Dataset
strong negative linear relationship. A coe cient aroufidmplies no In this illustrative experiment, from the MT-Bench dataset
linear relationship. [48], we collect the data of the rst prompt Compose an

i . Third. f f ref ) engaging travel blog post about a recent trip to Hawaii, high-
7.1.3  Ranking Distance. Third, for ease of reference, we rewrite lighting cultural experiences and must-see attractions” and

thed@stlb P° formula, which evaluates the distance be_tween ranking_s its six responses fromGPT-3.5, GPT-4 [33, Claude-v1
obtained by corrupted and recovered matrices, previously de ned in [3], Vicuna-13B [7], Alpaca-13B [39, and LLaMA-13B

Section?? 16 [41]. Additionally, we generated nine responses to the same
P . 10/ s 1690 A 1H 1 1o prompt usingLlama-2-70B-chat-hf [42], Falcon-180B-chat
dist*tr P2 - 2 wgl Yoi 127101 D1 [2], Openchat-3.5 [44], Mixtral-8x7B-Instruct-v0.1
16 [22], Mistral-7B-Instruct-v0.2 [21], Gemini-pro
= 1 10ggj 16°71H1Q  Higo [15], Dolphin-2.2.1-mistral-7B [16],
> 2 &9 Solar-10.7B-instruct-v1.0 [25], Yi-34B-chat [1] from

Hugging Face's HuggingChag({] and LMSYS's Chatbot Arena
[48]. So we haves = 15responses.

Next, we rank the responses using OpenAl's GPT-4 Turbo
Lo GPT-4-1106-preview [33]. This ranking helps us create the BTL
7.2 Performance of Robust Ranking in General parameter vector. We then sort this vector descendingly for visu-

Setting ally accessible when building the corresponding preference matrix

whereb is the global ranking after applying ranking procedure with
%

First, we begin with the BTL model. We generate synthetic pairwise P 2 R™ ~. With 3 comparisons irP, we randomly remove en-
comparison data and also adversarial sparse matrix as follows. Wetries based on a speci ed deletion probability paramed@r,to
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