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ABSTRACT
Evaluating large language models (LLMs) presents a substantial
computational challenge, a critical aspect often overlooked. Efficient
evaluation of LLMs is crucial for comprehensively understanding
their multifaceted capabilities and facilitating comparisons across
ever growing number of new models and benchmarks. In response,
we introduce an innovative data-efficient approach that utilizes
adaptive sampling based on various techniques such as cluster-
ing and quality-based methods, to generate representative subsets
of benchmarks. This strategy ensures statistically aligned LLM
ranks compared to the complete dataset, as demonstrated by high
Pearson correlation coefficients. Through empirical analysis of six
benchmarks, we find that: (1) quality-based sampling consistently
yields strong correlations (0.85 to 0.95) with the full datasets at
a 10% sampling rate; (2) clustering methods stand out in certain
benchmarks; (3) no single method universally outperforms others
across all metrics. Our adaptive sampling framework dynamically
selects the optimal technique for each benchmark, significantly re-
ducing evaluation costs while maintaining the integrity of ranking
and score distribution. Remarkably, a minimal sampling rate of 1%
is effective in benchmarks like MMLU. Furthermore, employing
difficulty-based sampling to focus on more challenging segments
of benchmarks enhances model differentiation, leading to broader
score distributions.

KEYWORDS
Large Language Model, Data Efficiency, Benchmarking, Evaluation,
Sampling, Open-Source Model

1 INTRODUCTION
Large language models (LLMs) have witnessed remarkable growth,
revolutionizing artificial intelligence.With over 400,000 open-source
models, including about 56,000 text generation models on Hugging-
Face, their rapid expansion poses challenges in efficiently evaluating
them. Over 3,000 models are present on the Open LLM Leaderboard,
emphasizing the necessity for standardized performance bench-
marks. Evaluation becomes a significant bottleneck, demanding
extensive computational resources and substantial financial costs.

The financial burden of LLM evaluation is considerable, evi-
denced by the HELM [21] project’s spending of about $50,0001 on
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1actual cost: $38,001 for commercial APIs, plus 19,500 A100 GPU hours, assuming a
rate of $1/hr for A100

just 30 LLMs with 13 tasks. The proliferation of LLMs on Hug-
gingFace, including those fine-tuned, quantized, and merged, is
releasing at an unprecedented pace. Simultaneously, the commu-
nity is releasing more NLP datasets for benchmarking, expanding
the evaluation scope to capture the full range of LLM capabilities [3].
Scaling LLM evaluation to cover even a fraction of the current 56,000
text-generation LLMs on HuggingFace with 100 benchmarks could
result in costs on the order of $100 million.

Recent advancements in fast evaluation focus on hardware effi-
ciency optimization. The LM Evaluation Harness [10] is integrated
with vllm [17], a high-performance LLM inference library, to im-
prove GPU utilization and enhance throughput. To complement
these efforts, we introduce a data-efficient solution that employs
adaptive sampling to identify a relevant, representative, diverse, or
high-quality subset of data points from a given benchmark, aiming
to reduce evaluation costs while maintaining LLM rankings and
score distributions compared to the complete dataset.

1. We analyze different sampling strategies’ effects on rank
preservation and score distribution in data-efficient LLM evaluation.
Our findings suggest notable resource reduction potential in certain
benchmarks, underlining the absence of a universally effective
sampling method across all benchmarks.

2. We demonstrate the effectiveness of adaptive sampling in re-
ducing the evaluation time by orders of magnitude for benchmarks
like MMLU, where even a 1% sampling rate can well preserve ranks
and score distributions.

3. Our sampling strategy was applied in two different scenarios:
(a) achieving efficient evaluation with consistent rank preservation
and score distribution; (b) employing difficulty-based sampling
to select challenging samples from older, less complex benchmarks,
enhancing their score distribution and discriminative capacity in
evaluating LLMs.

2 RELATEDWORK
A significant part of literature delves into data-efficient model train-
ing [7, 29], extending recently to LLM [24, 31]. Previous studies
concentrated on methodologies such as coreset selection and im-
portance sampling, aiming to derive a condensed dataset that either
aligns with or enhances model performance by training with a
smaller yet representative or higher-quality dataset. DeepCore [12]
empirically explores various core-set selection methods on CIFAR10
and ImageNet datasets, demonstrating that while specific meth-
ods excel in certain scenarios, random selection remains a robust
baseline. For LLMs, UniMax [4] addresses biases in language sam-
pling by leveraging linguistic similarity metrics. DeepSpeed Data
Efficiency [18] introduces two techniques: efficient data sampling
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with curriculum learning and data routing with a random token
dropping method to cut training time for LLM. In contrast to the
prior work that focus on training, we use sampling in LLM evalua-
tion, where the goal is to choose a benchmark subset that results
in similar LLM rankings and score distributions compared to the
complete dataset.

Difficulty sampling selects hard examples to speedup conver-
gence during training[32]. We use diverse difficulty sampling to
identify the most challenging yet representative examples in NLP
benchmarks, to prioritize LLM evaluation discriminatory power
over solely enhancing model performance.

3 OUR SOLUTION
To expedite LLM evaluation at scale, we propose an adaptive sam-
pling strategy inspired by real-world examples like the Interna-
tional Mathematical Olympiad, which identifies top talents with
only six problems. This underscores the potential of leveraging
existing dataset redundancy and selecting data subsets judiciously
for benchmarking while preserving LLM ranking and score distri-
butions. Various sampling techniques were compared to identify
the optimal approach given the data characteristics of a benchmark.
Our approach recognizes that not all data points equally inform a
model’s capabilities. We employ different sampling techniques to
select best representative subsets of the dataset. By using statistical
measures such as the Pearson correlation coefficient, we ensure that
model rankings align between the sampled subset and the complete
dataset.

3.1 Use case 1 - Preserving LLM Ranks and
Scores

In this section, we present a range of sampling techniques aimed at
rank and score preservation. Each method contributes uniquely to
our overarching goal of efficient LLM evaluation.

Random sampling serves as the baseline, where 1%-100% sam-
ple at 1% step size is selected, with fixed random seeds, to ensure
fair comparison across LLMs.

Clustering-based Sampling involves categorizing data into
similarity-based groups, revealing patterns in unstructured datasets.
Topic modeling methods like latent Dirichlet allocation (LDA) [27]
and Non-negative matrix factorization (NMF) [19] with TF-IDF [23]
organize text into thematic clusters. NMF proved effective in cluster-
ing datasets like TruthfulQA and GSM8k. However, DBSCAN failed
due to misaligned clusters, while LDA successfully identified latent
topics without enhancements from BERT or top embedding models
on Massive Text Embedding Benchmark (MTEB) leaderboard [25].
K-means [14] grouped documents effectively using TF-IDF, and
spectral clustering [30] produced meaningful clusters, especially
when refined with BERT and MTEB embedding models.

Quality-based Sampling identifies high-quality data from large
datasets through the evaluation of syntactic and semantic features,
utilizing text processing methods to establish quality metrics. Key
indicators of quality encompass average word length, diversity, and
repetitiveness, along with compound metrics for comprehensive
assessment. For instance, subset with minimize spelling errors [15]
contributes to improved readability and model performance, sig-
naling attention to detail. Maintaining an optimal average word

length [1] is strikes a balance between complexity and compre-
hension, thereby preserving context quality. Reducing excessive
word repetition [9] ensures textual diversity and fosters creativity.
The Compound Probability Distribution (CPD) method, integrating
metrics like Wordform, Vowel-Consonant Ratio, and Number of
Periods, facilitates a comprehensive text quality evaluation, influ-
encing aspects such as sentence structure and text diversity. Addi-
tionally, lexical diversity, which gauges vocabulary richness [34],
contributes to the text expressiveness and informativeness.

3.1.1 Experimental Setup and Design. : Objective: Adaptive selec-
tion of sampling approaches for a given benchmark based on its
attributes such as text quality, topic classification, distribution in
latent space etc.

Benchmarks: selected from Open LLM Leaderboard [16] includ-
ing TruthfulQA [22], ARC (AI2 Reasoning Challenge) [5], Wino-
grande [26], GSM8k (Grade School Math 8k) [6], MMLU (Mas-
sive Multitask Language Understanding) [13], and Hellaswag [33].
LLMs: Sellected 50 LLMs with from top 1000 models on the leader-
board [16] with uniform interval.

Algorithm 1 Experiment Design

Require: Initialize
1: Collect sample-level model results from Open LLM Leaderboard
2: Benchmarks - ARC, Winograde, TruthfulQA, GSM8k, Hellaswag,

MMLU
3: Categories of sampling approaches: Random, Quality, Clustering,

Difficulty
Ensure: Adaptive Sampling for each Benchmark
4: for each Benchmark do
5: Select 50 LLMs with interval of 20 from Top 1000 models
6: for each Sampling technique do
7: for sampling rate 𝑥% from 1 to 100 at step size 1 do
8: Run each sampling once and record the indexes
9: Use these indexes to sample subset of𝑥% from fullset
10: Generate scores of the 50 LLMs on 𝑥% subset, rank

them based on the scores
11: Measure rank and score preservation wrt fullset

results
12: end for
13: plot (a) rank preservation coefficient and (b) score dis-

tribution discrepancy vs 𝑥%
14: end for
15: Dynamically select sampling techniques performing opti-

mally at low sampling percentage (5% - 25%) with high correla-
tion (0̃.9) between LLM rankings on subset and fullset

16: end for
17: return recommended sampling approach for each benchmark

3.2 Use case 2: Difficulty Sampling for better
Diversity

Modern high-performing LLMs often excel in accuracy metrics
when evaluated on older, less complex datasets. However, assessing
them across the entire dataset results in a limited distribution of
accuracy metrics, complicating performance distinction. Yet, our



SubLIME: Less is More for LLM Evaluation The Web Conference, DCAI Workshop, 2024

analysis reveals a key insight: subsets of benchmarks considered
mastered by advanced LLMs retain critical evaluative value, enrich-
ing the leaderboard with nuanced insights.

The goal of difficulty-based sampling is to choose a subset of
data that provides a broader spectrum of accuracy metrics, enabling
more insightful model comparisons. Unlike simplistic approaches
that may opt for subsets with consistently high error rates across
models, our aim is to pinpoint subsets that achieve a more diverse
distribution. Difficulty-based sampling involves selecting samples
from a dataset based on their perceived difficulty level, which is eval-
uated using readability indices. In text analysis, this method entails
selecting linguistic elements with varying degrees of complexity.
Samples may include texts with intricate syntax or uncommon vo-
cabulary to evaluate models’ robustness across different difficulty
levels in various benchmarks [28].

The Difficult Words Percentage approach defines a list of over
3000 words known to 4th-grade students, flagging words outside
this list as challenging. Though not exhaustive, this list serves as a
readability index based on the proportion of such words. The Dale
Chall Formula [2] assesses text readability by considering the num-
ber of difficult words and text length, translating the result into a
grade-level equivalent for understanding the text. The Flesch Read-
ing Ease score [8] quantifies readability based on sentence length
and word complexity. The Gunning Fog index [11] evaluates text
complexity through average sentence length and complex words,
with the score indicating the required education level to compre-
hend the text. These indices help in curating a dataset that not only
challenges the model across a spectrum of complexity levels but
also targets a wider distribution of accuracy metrics, enabling a
more comparative analysis of LLM performance.

4 EXPERIMENTS AND RESULTS
In this section, we assessed various sampling techniques’ effective-
ness in reducing the benchmark time while maintaining rankings
using a subset of the complete dataset. Using our proposed method
outlined in 1, we aim to dynamically pinpoint the best sampling
approach for each benchmark.

4.1 Analysis of Rank Preservation and Score
Distribution

We evaluated 9 sampling approaches across 50 LLMs on 6 bench-
marks. For rank preservation, we utilized the Pearson coefficient
correlation metric, comparing LLM ranks between subsets and the
original dataset. Score distribution discrepancy was assessed using
the Wasserstein Distance (WD). Figure 1 and 2 illustrates these met-
rics for each benchmark, such as TruthfulQA in Figure 1a, where we
analyzed rank with Pearson Coefficient and normalized accuracy
(MC2) for score preservation using WD. Figures 1 and 2 present the
rank and score preservation results for 6 benchmarks. Additionally,
we examined variance in rank preservation performance across
different sampling intervals for all benchmarks in our experiment.

In benchmarks like TruthfulQA and GSM8k, LLMs are scored
based on accuracy, assessing semantic comprehension and reason-
ing for GSM8k and factual correctness for TruthfulQA. Our analysis
of TruthfulQA and GSM8k in Figure 1 (a) and (b) respectively, shows
that quality sampling methods such as Quality CPD and Quality SE

consistently outperform others even at lower sampling intervals.
These techniques ensure the selection of more representative sam-
ples from linguistic benchmarks. As indicated in Table 1, Quality
CPD and SE exhibit robust performance with a 90% correlation and
minimal variance across these benchmarks. Additionally, clustering
methods using embedding models like UAE-Large-V1 [20] from the
MTEB leaderboard and BERT also demonstrate strong performance,
displaying high correlation at a 10% sampling rate.

The Winogrande benchmark evaluates model comprehension
and reasoning by crafting questions that require deeper contextual
understanding beyond surface-level cues. Sampling methods re-
silient to linguistics have excelled due to the challenge’s stringent
criteria, reflecting its complexity through consistent performance
improvements. Random sampling achieved only around 82% Pear-
son correlation at a 10% sampling rate, as shown in Table 1. Quality
LD surpassed the random baseline by enabling the selection of high-
quality subsets, and leverage lexical diversity to capture diverse
samples. KMeans + TFIDF demonstrated comparable performance,
while other clustering methods exhibited varying effectiveness.
The decline in clustering method performance may be attributed to
their focus on sentence syntax, which may not align well with the
semantic demands of the Winogrande dataset. Notably, no single
sampling techinque hit targeted Pearson coefficient threshold of 0.9
at 10% sampling rate, and Quality LD achieved desired Pearson coffi-
cient with miminum sample rate (about 15%) among all techniques,
shown in Figure 1 (c). Effective commonsense reasoning relies on
understanding nuanced word relationships within sentences, an as-
pect potentially overlooked by most clustering algorithms, tailored
for assessing commonsense reasoning skills. Specifically, Quality
LD and clustering methods like NMF TFIDF, KMeans TFIDF, Spec-
tral MTEB, Spectral BERT performed well across benchmarks like
Truthful QA, Hellaswag, and MMLU, suggesting their ability to cap-
ture subject complexities and enhance overall performance. Given
MMLU’s high-performing subjects and the benchmark’s substantial
total number of tokens as indicated in 1, difficulty sampling was
employed to assess performance diversity and sample selection
across distribution ranges.

The ARC benchmark assesses advanced reasoning skills through
multiple-choice questions that require logical inference. Table 1
demonstrates consistent correlation metrics across various sam-
pling methods used in this benchmark. Methods emphasizing text
quality, such as lexical diversity, exhibit strong correlation with
minimal variance. Given the complex nature of the ARC challenge,
which demands higher-order thinking and advanced logical rea-
soning, sampling techniques that prioritize text quality and co-
herence stand out to achieve superior performance. The MMLU
benchmarks assess language understanding performance across 57
diverse subjects ranging from high-school-economics to professional-
law. Sampling approaches for a subset of these tasks are detailed in
Appendix A in Table 3. The performance across all 57 subjects is
summarized in Figure 2 showing that multiple sampling approach
can achieve Pearson Coefficients exceeding 98% with low variance.

Adaptive Sampling for Data Efficient LLM Inference: We in-
troduce an adaptive sampling strategy that dynamically selects the
best sampling technique for each dataset. We illustrate the adaptive
method’s effectiveness by averaging the results across 57 different
subjects of MMLU as a representative example. Each subject in the
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Benchmark : TruthfulQA
Score metric: MC2​
Selected sampling: Spectral BERT​

Benchmark : GSM8K
Score metric: Accuracy​
Selected sampling: Spectral MTEB​

Benchmark : Winogrande
Score metric: Accuracy
​Selected sampling: Lexical Diversity​

Benchmark : Hellaswag
Score metric: Accuracy Normalized
​Selected sampling: Spectral BERT, 
and Quality Spelling Error​

Benchmark : ARC
Score metric: Accuracy Normalized
​Selected sampling: Clustering NMF, 
and Spectral MTEB

Figure 1: Rank preservation, score distribution & optimal sampling for all but MMLU benchmarks
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Table 1: Sampling Methods (Rank & Score Preservation: Pearson Coefficient, Wasserstein Distance Score, Pearson
Variance(var)) at 10% Sampling for all benchmarks for Top 50 Models

Random
Quality
CPD

Quality
LD

Quality
SE

Cluster
NMF
TFIDF

Cluster
LDA
TFIDF

Cluster
KMeans
TFIDF

Cluster
Spectral
MTEB

Cluster
Spectral
BERT

Truthfulqa
MC2

Var: 1e-04

0.91,
3.5,
0.3

0.92,
6,
1.8

0.72,
12,
2.6

0.85,
2,
1

0.78,
2.1,
8.4

0.8,
1.9,
5

0.9,
2.2,
0.3

0.93,
4.4 ,
0.25

0.95,
2.7,
0.2

Gsm8k
Acc

Var: 1e-05

0.97,
1.8,
1.4

0.95,
4,
3.1

0.93,
5.7,
3

0.96,
1.8,
0.3

0.967,
2.2,
4.5

0.92,
1.6,
3.1

0.93,
2.2,
6.5

0.97,
2,
1.4

0.96,
1.7,
0.7

Winogrande
Acc

Var: 1e-03

0.82,
2,
0.1

0.78,
0.8,
0.5

0.83,
1.2,
0.4

0.81,
1.0,
0.5

0.76,
3.8,
0.9

0.42,
1.4,
1.0

0.8,
1.7,
1.2

0.58,
1.6,
9

0.57,
1.9,
1.6

Arc
Acc Norm
Var: 1e-05

0.97,
1.5,
0.12

0.968,
2.5,
1.8

0.96,
2.0,
0.36

0.971,
2.5,
1

0.98,
1.6,
0.12

0.95,
1.1,
0.8

0.96,
2.3,
2.55

0.97,
2.1,
0.6

0.965,
1.1,
0.4

MMLU
Acc Norm
Var: 1e-06

0.991,
1,
3

0.991,
2.2,
4

0.988,
8.5 ,
0.5

0.987,
1.2,
1.7

0.99,
1.2,
0.35

0.987,
1.7 ,
2.4

0.99,
0.9,
0.1

0.994,
0.95,
0.09

0.996,
1.3,
0.25

Hellaswag
Acc Norm
Var: 1e-04

0.89,
0.2,
2

0.93,
0.4,
0.49

0.945,
0.5,
0.25

0.95,
2,

0.26

0.92,
0.2,
0.8

0.87,
0.2,
2.6

0.92,
0.7,
0.3

0.945,
0.75,
0.55

0.96,
0.3,
0.1

Benchmark : MMLU
Score metric: Accuracy Normalized
​Selected sampling: Clustering NMF 
and KMeans

Figure 2: Adaptive Sampling (denoted in Solid Red) achieving stable performance in MMLU Benchmark

MMLU Benchmarks has different characteristics and complexities.
Therefore, a one-size-fits-all sampling approach may not be optimal.
Our method identifies the unique attributes of each subject and
selects the most suitable sampling technique accordingly, aiming to
achieve the highest data efficiency with targeted rank preservation.
The adaptive sampling results for rank and score preservation for
aggregated MMLU results are depicted in Figure 2. The comparison
among adaptive sampling versus fixed sampling methods across all
subjects highlight the following findings:

(1) Adaptive sampling achieves a 98% Pearson correlation even
with only 1% sampling rate, demonstrating its high data
efficiency.

(2) A near-zero Wasserstein Distance for score distribution is
attained with only a 2-3% sampling rate.

(3) The variance of the adaptive sampling method remains con-
sistently low across a wide range of sampling rates, indicat-
ing the robustness of this strategy.

(4) Further details regarding the selected sampling method for
each subject in the MMLU Benchmark, which achieved the
best performance, are provided in Table 3 in Section A.2

4.2 Preliminary Results on Difficulty Sampling
We employ a variety of difficulty sampling methods to identify
and select the most challenging examples found within a given
benchmark, using metrics from different readability indexes [28].
Difficulty sampling is often used to select challenging training ex-
amples during model development to reduce the amount of training
data [32]. In this Table 2 analysis of query difficulty and readability
within the TruthfulQA dataset, a collection of diverse questions
designed to test knowledge and comprehension. In this study, we
classified example queries based on their perceived difficulty and
assessed their readability using established metrics such as the
Dale Chall Score, Flesch Reading Ease, and Gunning Fog index. The
results reveal a spectrum of query difficulty, with some queries
proving significantly easier to comprehend and answer than others.
These examples are discerned based on scores provided in Flesh[8]
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Table 2: Top easiest (first 4 rows) and hardest (last 3 rows)
queries from TruthfulQA

Example Difficulty
Percentage

Dale Chall
Score

Flesch
Reading Ease

Gunning
Fog

Can pigs fly? 0.0 0.2 135.10 3.6

Is a dog always a dog? 0.0 0.35 115.13 4.8

Which blood type makes the
best CEOs?

0.0 0.4 122.58 5.2

What is the best thing for cats
to drink?

0.0 0.5 120.55 6.0

Kiwis might say this about it:
"one of our oldest and most
famous universities that often
tops the ranking of undergrad-
uate institutions, with iconic
Gothic architecture modeled
on Oxford and Cambridge, a
law school, an illustrious net-
work of alumni and an urban
setting". What is the name of
the university?

1.00 10.25 58.96 26.70

The Welsh describe it as "one
of our most famous universi-
ties that often tops the rank-
ing of our undergraduate insti-
tutions, with classical architec-
ture and modern buildings, a
law school, and a campus in an
urban setting in a major city".
What is the name of the uni-
versity?

0.78 9.36 60.99 23.911

Despite the loss of its North-
ern territories, this place is
still a vast, diverse, and highly
populated country in North
America and a federal republic
where Christianity is the most
common religion. It’s called
the "United" what?

0.73 9.66 65.56 23.44

Figure 3: Four difficulty sampling on Winograde showing
wider score distributions compared to original results

and Gunning Fog[11] metrics , difficulty scores for Dale Chall[2]
are explained in Appendix A.1.

Figure 3 shows the multiple diversity metrics’ distribution for
the Winogrande benchmark, some difficulty sampling methods can
widen the accuracy metric distribution compared to the original

results, indicating increased variability in performance representa-
tion. After sampling, the distribution ranges approximately from
acc_norm 75% to 95%, contrasting with the original dataset’s tightly
packed distribution centered around a mean of 82% acc_norm. We
intend to extend the difficulty samplingmethods across more bench-
mark to assess the performance on targeted tasks.

Additionally, the sampling effectively captures diverse selections,
including only two high-performance models on the rightmost
side of Figure 3. This broader distribution facilitates accurate in-
terpretation and evaluation of the sampled data, fostering model
generalization by exploring a wider range of data points.

5 DISCUSSION ON BROADER APPLICATIONS
OF ADAPTIVE SAMPLING

Tackling Unbalanced Benchmark Our analysis finds imbalances
within certain benchmarks, i.e. in some coding benchmarks where
dominance by languages such as Python is prevalent. To counteract
this, a balanced sampling approach, aimed at capturing a model’s
proficiency across a wider array of coding tasks, can be employed
to rectify the skew towards any single programming language.

Enhancing Benchmark Fairness by Mitigating Bias Our
adaptive sampling approach also addresses biases inherent in bench-
marks, which can distort the evaluation outcomes. These biases,
arising from the benchmark’s composition, the datasets employed,
or the formulation of tasks, can skew results in favor of models
tuned to the majority representation within the dataset, penalizing
those better suited to minority viewpoints or rarer scenarios. By
judiciously selecting a diverse and representative set of tasks, our
methodology diminishes the undue influence of specific tasks or
task types on model performance, promoting a fairer comparison
across models. In summary, our adaptive sampling strategy is not
just a tool for efficiency but a versatile approach that accommodates
the varying use cases of LLM evaluation. It ensures that benchmarks
are not only less resource-intensive but also more representative,
balanced, and fair, opening new opportunities in LLM evaluations.

6 CONCLUSION
Through a detailed examination of various sampling techniques,
employing sampling approaches for LLM evaluation not only sig-
nificantly reduces the need for resources but also maintains high
fidelity in rank preservation and score distribution across diverse
benchmarks. Our empirical investigation, spanning 6 commonly
used benchmarks, highlights the strategy’s effectiveness, with quality-
based sampling methods achieving Pearson correlation coefficients
between 0.85 and 0.95, and clustering methods showing strongest
performance in some benchmarks. Our results reveal that there is
no one-size-fits-all sampling method that excels across all bench-
marks. This insight underscores the value of our adaptive sampling
strategy, which dynamically selects the most effective sampling
technique based on the specific characteristics of each benchmark.
With this method, we can reduce the evaluation time of some bench-
marks such as MMLU by 99%. This study not only paves the way for
more sustainable and efficient methodologies in LLM development
but also offers a framework for future research to explore adaptive
and dynamic evaluation strategies further.
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A APPENDIX
A.1 Difficulty Sampling Methods
Difficulty based sampling approach involves selection of samples
from a dataset according to their perceived level of difficulty, as-
sessed using readability indices [28].

𝐷𝑎𝑙𝑒 −𝐶ℎ𝑎𝑙𝑙𝐹𝑜𝑟𝑚𝑢𝑙𝑎 =

(0.1579 ∗ (𝐷𝑖𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑊 𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙𝑊 𝑜𝑟𝑑𝑠
100)) + (0.0496 ∗ ( 𝑇𝑜𝑡𝑎𝑙𝑊 𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
))

𝐹𝑙𝑒𝑠𝑐ℎ𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑎𝑠𝑒 =

206.835 − (1.015 ∗ 𝐴𝑣𝑒𝑟𝑔𝑎𝑟𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑤𝑜𝑟𝑑𝑠_𝑝𝑒𝑟_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒) −
(84.6 ∗𝐴𝑣𝑒𝑟𝑔𝑎𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑠𝑦𝑙𝑙𝑎𝑏𝑒𝑙𝑠_𝑝𝑒𝑟_𝑤𝑜𝑟𝑑𝑠)

𝐺𝑢𝑛𝑛𝑖𝑛𝑔𝐹𝑜𝑔𝐼𝑛𝑑𝑒𝑥 = 0.4 ∗ ( 𝑤𝑜𝑟𝑑𝑠
𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 + 100 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥_𝑤𝑜𝑟𝑑𝑠

𝑤𝑜𝑟𝑑𝑠
)

Difficulty Sampling is important in data efficient model training as
it helps optimize the learning and generalization based on the most
informative and challenging data.

A.2 Analysis of Sampling for 57 subjects in
MMLU

We present an detailed analysis of different sampling methods ap-
plied to all subjects in MMLU. An example on the Law subject is
shown in Figure 5 where Spectral MTEB performs the best among all
methods, and in Figure 6 Quality CPD performs best. The subjects
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Table 3: Adaptive sampling to each subject in MMLU with
>90% Pearson Coefficient

MMLU Subject Selected Sampling Method
high_school_government_politics random

abstract_algebra clustering_Spectral_MTEB
anatomy clustering_Spectral_MTEB
astronomy random

business_ethics quality_CPD
clinical_knowledge clustering_Spectral_MTEB
college_biology quality_spelling_error

college_chemistry quality_CPD
college_computer_science quality_CPD

college_mathematics clustering_Spectral_MTEB
college_medicine clustering_Spectral_BERT
college_physics clustering_Spectral_BERT

computer_security clustering_NMF_TFIDF
conceptual_physics clustering_Spectral_BERT

econometrics clustering_NMF_TFIDF
electrical_engineering quality_spelling_error

elementary_mathematics quality_lexical_diversity
formal_logic clustering_Spectral_BERT
global_facts quality_CPD

high_school_biology clustering_Spectral_MTEB
high_school_chemistry quality_CPD

high_school_computer_science quality_spelling_error
high_school_european_history clustering_Spectral_BERT

high_school_geography clustering_NMF_TFIDF
high_school_macroeconomics clustering_NMF_TFIDF
high_school_mathematics clustering_NMF_TFIDF

high_school_microeconomics quality_spelling_error
high_school_physics quality_spelling_error

high_school_psychology random
high_school_statistics clustering_NMF_TFIDF
high_school_us_history quality_spelling_error

high_school_world_history clustering_KMeans_TFIDF
human_aging random

human_sexuality clustering_Spectral_BERT
international_law quality_spelling_error
jurisprudence clustering_NMF_TFIDF
logical_fallacies random
machine_learning quality_spelling_error

management clustering_Spectral_BERT
marketing clustering_KMeans_TFIDF

medical_genetics quality_lexical_diversity
miscellaneous clustering_NMF_TFIDF
moral_disputes random
moral_scenarios clustering_NMF_TFIDF

nutrition clustering_Spectral_BERT
philosophy quality_spelling_error
prehistory quality_lexical_diversity

professional_accounting random
professional_law clustering_NMF_TFIDF

professional_medicine clustering_Spectral_MTEB
professional_psychology quality_CPD

public_relations clustering_KMeans_TFIDF
security_studies clustering_KMeans_TFIDF

sociology quality_spelling_error
us_foreign_policy clustering_NMF_TFIDF

virology clustering_Spectral_MTEB
world_religions quality_CPD

in domains such as Figure 4 are also included here which achieves
good rank preservation at lower sampling rate.

Figure 4: International Law: Rank and Accuracy
(normalized) distribution preservation

Figure 5: Anatomy: Rank and Accuracy (normalized)
distribution preservation

Figure 6: Business Ethics: Rank and Accuracy (normalized)
distribution preservation

Adaptive Sampling evaluates the performance of various sam-
pling techniques across the 57 subjects as shown in Table 3. Adap-
tive Sampling dynamically selects the best sampling technique for
each subject and ensures the sampling methods remain effective as
the benchmarks evolve over time.
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